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Freeman, Marc E., Béla Kanyicska, Anna Lerant, and Gyorgy Nagy. Prolactin: Structure, Function, and
Regulation of Secretion. Physiol Rev 80: 1523-1631, 2000.—Prolactin is a protein hormone of the anterior pituitary
gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry
young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin
appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as
phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also
within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even
the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been
shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only
include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although
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it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin,
other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate
prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current
understanding of prolactin’s function and its regulation and to expose some of the controversies still existing.

I. INTRODUCTION

Prolactin is a polypeptide hormone that is synthe-
sized in and secreted from specialized cells of the anterior
pituitary gland, the lactotrophs. The hormone was given
its name based on the fact that an extract of bovine
pituitary gland would cause growth of the crop sac and
stimulate the elaboration of crop milk in pigeons or pro-
mote lactation in rabbits (1477). However, we now appre-
ciate that prolactin has over 300 separate biological ac-
tivities (184) not represented by its name. Indeed, not only
does prolactin subserve multiple roles in reproduction
other than lactation, but it also plays multiple homeo-
static roles in the organism. Furthermore, we are now
aware that synthesis and secretion of prolactin is not
restricted to the anterior pituitary gland, but other organs
and tissues in the body have this capability. Indeed, the
multiple roles and sources of prolactin had led Bern and
Nicoll (154) to suggest renaming it “omnipotin” or “versa-
tilin.”

In this review we integrate the burgeoning informa-
tion on prolactin’s structure (sect. 1), synthesis and re-
lease from varying sources (sect. m), the intracellular
mechanism of its action (sect. v), its major biological
functions (sect. v), and the patterns (sect. vi) and regula-
tion of its secretion (sect. vin).

II. PROLACTIN CHEMISTRY AND
MOLECULAR BIOLOGY

A. Prolactin: Gene, Primary Structure, and
Species Specificity

Based on its genetic, structural, binding and func-
tional properties, prolactin belongs to the prolactin/
growth hormone/placental lactogen family [group I of the
helix bundle protein hormones (195, 791)]. Genes encod-
ing prolactin, growth hormone, and placental lactogen
evolved from a common ancestral gene by gene duplica-
tion (1311). The divergence of the prolactin and growth
hormone lineages occurred ~400 million years ago (357,
358). In the human genome, a single gene, found on
chromosome 6, encodes prolactin (1363). The prolactin
gene is 10 kb in size and is composed of 5 exons and 4
introns (357, 1772). Transcription of the prolactin gene is
regulated by two independent promoter regions. The
proximal 5,000-bp region directs pituitary-specific expres-
sion (160), while a more upstream promoter region is

responsible for extrapituitary expression (159). The hu-
man prolactin cDNA is 914 nucleotides long and contains
a 681-nucleotide open reading frame encoding the prolac-
tin prohormone of 227 amino acids. The signal peptide
contains 28 amino acids; thus the mature human prolactin
is composed of 199 amino acids (1640).

The prolactin molecule is arranged in a single chain
of amino acids with three intramolecular disulfide bonds
between six cysteine residues (Cys*-Cys!!, Cys®®-Cys'™,
and Cys'?’-Cys'® in humans) (357). The sequence homol-
ogy can vary from the striking 97% among primates to as
low as 56% between primates and rodents (1640). In rats
(358) and mice (968), pituitary prolactin consists of 197
amino acids, whereas in sheep (1036), pigs (1035), cattle
(1851), and humans (1624) it consists of 199 amino acids
with a molecular mass of ~23,000 Da.

B. Secondary and Tertiary Structure of Prolactin

Studies on the secondary structure of prolactin have
shown that 50% of the amino acid chain is arranged in
a-helices, while the rest of it forms loops (169). Although
it was predicted earlier (1311), there are still no direct
data about the three-dimensional structure of prolactin.
The tertiary structure of prolactin was predicted by ho-
mology modeling approach (635), based on the structural
similarities between prolactin and other helix bundle pro-
teins, especially growth hormone (2, 438). According to
the current three-dimensional model, prolactin contains
four long o-helices arranged in antiparallel fashion (2,
438).

C. Prolactin Variants

Although the major form of prolactin found in the
pituitary gland is 23 kDa, variants of prolactin have been
characterized in many mammals, including humans. Pro-
lactin variants can be results of alternative splicing of the
primary transcript, proteolytic cleavage and other post-
translational modifications of the amino acid chain.

1. Alternative splicing

Alternative splicing of prolactin mRNA has been pro-
posed as one source of the variants (1639, 1640). Indeed,
evidence suggestive of the existence of an alternatively
spliced prolactin variant of 137 amino acids has been
described in the anterior pituitary (501, 1882). In addition,
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alternative splicing involving retention of introns is also
possible. However, alternative splicing is not considered a
major source of prolactin variants.

2. Proteolytic cleavage

Of the cleaved forms that have been characterized,
14-) 16-, and 22-kDa prolactin variants have been most
widely studied. The 14-kDa NH,-terminal fragment is a
posttranslational product of the prolactin gene that is
processed in the hypothalamus and shares biological ac-
tivity with the 16-kDa fragment (335, 1765). Both seem to
possess a unique biological activity, which will be de-
scribed later. The 16-kDa fragment [prolactin-(1—148)]
was first described in rat pituitary extracts (1207) and has
subsequently been found in mouse (1642) and human
(1643) pituitary glands as well as in human plasma (1643).
The 16-kDa prolactin is a product of kallikrein enzymatic
activity. Kallikrein is an estrogen-induced, trypsin-like
serine protease that is found in the Golgi cisternae and
secretory granules of lactotrophs (1433). This enzyme will
cleave rat prolactin in a thiol-dependent manner. Thiol
alters the conformation of prolactin such that kallikrein
recognizes it as a substrate. Treatment of native prolactin
with carboxypeptidase-B results in a 22-kDa prolactin
fragment [prolactin-(1—173)]. Surprisingly, this synthetic
fragment can be detected in pituitary extracts by Western
blot using an antiserum produced specifically against the
22-kDa prolactin fragment (45). It seems that the produc-
tion and release of these proteolytic fragments from the
pituitary gland is specific to female rats and sensitive to
inhibition by dopamine (45). Although these and other
fragments have been found in pituitary gland and serum,
more work is required to determine their physiological
significance since the possibility remains that they may be
preparative artifacts (1640).

3. Other posttranslational modifications

Besides proteolytic cleavage, the majority of prolac-
tin variants can be the result of other posttranslational
processing of the mature molecule in the anterior pitu-
itary gland or the plasma. These include dimerization and
polymerization, phosphorylation, glycosylation, sulfation,
and deamidation (1702).

A) DIMERIZATION AND POLYMERIZATION: MACROPROLACTINS.
Dimerization and polymerization of prolactin or aggrega-
tion with binding proteins, such as immunoglobulins, by
covalent and noncovalent bonds may result in high-mo-
lecular-weight forms. In general, the high-molecular-
weight forms have reduced biological activity (1640). The
role of prolactin-IgG macromolecular complexes in the
detection and differential diagnosis of different pro-
lactinemias is targeted primarily in clinical studies (299).

B) PHOSPHORYLATION. Phosphorylation of prolactin oc-
curs within the secretory vesicle of lactotrophs just be-
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fore exocytosis and involves esterification of hydroxyl
groups of serine and threonine residues (670). Phosphor-
ylated prolactin isoforms have been isolated from bovine
(224) and murine (1337) pituitary glands. Phosphorylated
isoforms of prolactin may constitute as much as 80% of
total pituitary prolactin in cattle (938). Although phospho-
prolactin has been shown to be secreted in vitro, it is not
known if it is secreted into the plasma in vivo. The sig-
nificance of phosphorylated and nonphosphorylated pro-
lactins has been reviewed in detail (736). Phosphorylated
prolactin has much lower biological activity than non-
phosphorylated prolactin (1859). However, phosphory-
lated prolactin may subserve a unique role as an autocrine
regulator of prolactin secretion since it suppresses the
release of nonphosphorylated prolactin from GHj cells
(768). Phosphorylation of prolactin as well as the relative
ratio of phosphorylated to nonphosphorylated isoforms
seems to be regulated throughout the estrous cycle (769),
although the physiological relevance of this finding is not
yet appreciated. However, novel data indicate that phos-
phorylated prolactin acts as an antagonist to the signal
transduction pathways (362) and proliferative activities
initiated by unmodified prolactin on Nb2 lymphoma cells
(315). Further investigation is needed to determine the
significance of phosphorylated prolactin in primary cells
and tissues.

C) GLycosyLATION. Glycosylated prolactin has been
found in the pituitary glands of a wide variety of mamma-
lian, amphibian, and avian species (1640). The degree of
glycosylation varies from 1 to 60% among species and may
also vary between reproductive states within species
(1640). The linkage of the carbohydrate moiety may be
either through nitrogen (N-glycosylation) or oxygen (O-
glycosylation). The carbohydrate residues of the oligosac-
charide chain may contain varying ratios of sialic acid,
fucose, mannose, and galactose that differ considerably
between species, physiological, and pathological states
(1640). Like other prolactin variants, glycosylation also
lowers biological activity (1127, 1641) as well as receptor
binding and immunologic reactivity of prolactins (740).
Glycosylation also alters the metabolic clearance rate of
prolactin (1641). Taken together, glycosylation of prolac-
tin may play a role either in regulation of the biological
activity or clearance of the molecule.

III. SITES OF SYNTHESIS AND SECRETION
OF PROLACTIN

A. Anterior Pituitary Gland

1. Morphology of lactotrophs

The cells of the anterior pituitary gland which syn-
thesize and secrete prolactin were initially described by
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light microscopy using conventional staining techniques
(753). These cells, designated lactotrophs or mam-
motrophs, comprise 20-50% of the cellular population of
the anterior pituitary gland depending on the sex and
physiological status of the animal. Lactotrophs were sub-
sequently identified unequivocally by immunocytochem-
istry in the anterior pituitary gland of the mouse (109), rat
(110, 1287), and human (111, 725, 1387) using species-
specific prolactin antibodies. Ontogenetically, lactotrophs
descend from the Pit-1-dependent lineage of pituitary
cells, together with somatotrophs and thyrotrophs (348,
643, 1382, 1599).

The morphology and distribution of lactotrophs have
been best described in the rat (1768), where prolactin-
containing cells are sparsely distributed in the lateroven-
tral portion of the anterior lobe and are present as a band
adjacent to the intermediate lobe (1287). Their shapes are
heterogeneous, appearing as either polyhedral or angular
but at times rounded or oval (429). With the use of either
velocity sedimentation at unit gravity (1650) or discontin-
uous Percoll gradients (1813) to separate cell populations,
it has been shown that lactotrophs vary based on their
secretory granule size and content (1650) as well as on the
amount of prolactin and prolactin mRNA present (1813).

2. Functional heterogeneity of lactotrophs

Aside from morphological heterogeneity, lactotrophs
display functional heterogeneity as well. Development of
the reverse hemolytic plaque assay (5672, 576, 1300) led to
a more precise description of functional heterogeneity in
lactotrophs (1090). Although prolactin is largely found
and secreted from a distinct cell type in the pituitary
gland, the lactotroph, both prolactin and growth hormone
can also be secreted from the intermediate cell population
called mammosomatotrophs (5672, 574, 576, 1300). These
bifunctional cells, which predominate in the pituitary of
neonatal rats (770), differentiate into lactotrophs in the
presence of estrogen (191). Mammosomatotrophs also
differentiate into lactotrophs in pups in the presence of a
maternal signal that appears in early lactation (1427) and
is delivered to the pups through the mother’s milk (1429).

There also appears to be functional heterogeneity
among lactotrophs with regard to their regional distribu-
tion within the anterior lobe (1246) as well as to the
nature of their responsiveness to secretagogues (188);
that is, lactotrophs from the outer zone of the anterior
lobe respond greater to thyrotrophin releasing hormone
(TRH) than those of the inner zone, adjacent to the inter-
mediate lobe of the pituitary gland (188). On the other
hand, dopamine-responsive lactotrophs (84) are more
abundant in the inner than the outer zone of the anterior
pituitary. Surprisingly, functional heterogeneity is also
reflected in the discordance between prolactin gene tran-
scription and prolactin release in some lactotroph popu-
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lations (296, 1562). Taken together, it is clear that lac-
totrophs are not homogeneous in their morphology,
hormonal phenotype, distribution, or function.

B. Brain

The first observation that prolactin is produced in the
brain was by Fuxe et al. (694) who found prolactin im-
munoreactivity in hypothalamic axon terminals. Prolactin
immunoreactivity was subsequently found in the telen-
cephalon in the cerebral cortex, hippocampus, amygdala,
septum (433), caudate putamen (502, 737), brain stem
(433, 737), cerebellum (1589), spinal cord (737, 1630),
choroid plexi, and the circumventricular organs (1741).

1. Hypothalamus

Prolactin immunoreactivity is found within numer-
ous hypothalamic areas in a variety of mammals (29, 677,
678, 737, 1321, 1630, 1741). Within the rat hypothalamus,
prolactin immunoreactivity is detectable in the dorsome-
dial, ventromedial (676), supraoptic, and paraventricular
(735) nuclei. Several approaches have been taken to
prove that prolactin found in the hypothalamus is synthe-
sized locally, independent of prolactin synthesis in the
pituitary gland. Indeed, hypophysectomy has no effect on
the amount of immunoreactive prolactin in the male hy-
pothalamus and only diminishes but does not abolish the
quantity of immunoreactive prolactin in the female rat
hypothalamus (433).

With the use of conventional peptide mapping (434)
and sequencing of a polymerase chain reaction (PCR)
product of hypothalamic ¢cDNA from intact and hypoph-
ysectomized rats (1882), it has been established that the
primary structure of prolactin of hypothalamic and pitu-
itary origin is identical. Thus it seems that the prolactin
gene expressed in the rat hypothalamus is identical to the
prolactin gene of the anterior pituitary (501, 1882).

Although the role of prolactin of hypothalamic origin
in the central nervous system (CNS) is not apparent, it
should be noted that the hypothalamus contains the ap-
propriate proteolytic enzymes to cleave 23-kDa prolactin
into 16- and 14-kDa fragments (435). We do not know if
prolactin of neural origin exerts its central effect as a
neurotransmitter, neuromodulator, or a central cytokine
regulating vascular growth and/or glial functions. To as-
cribe a role for prolactin of neural origin is troublesome,
in part, because it is difficult to differentiate between the
effects of prolactin of pituitary versus hypothalamic ori-
gin in the CNS. One cause of these difficulties is that
pituitary prolactin from the circulation bypasses the
blood-brain barrier and enters the CNS through the cho-
roid plexi of the brain ventricles. Coincidentally, choroid
plexi have a very high density of prolactin receptors (pro-
lactin-Rs) as demonstrated by autoradiography (1113,
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1853, 1854), immunocytochemistry (1495), standard re-
ceptor binding assays (1242), reverse transcriptase PCR,
and ribonuclease protection assay (590). Interestingly,
prolactin enhances the expression of its own receptors in
the choroid plexus (1113). Aside from passage from the
blood to the cerebrospinal fluid by way of the choroid
plexus, pituitary prolactin may also reach the brain by
retrograde blood flow from the anterior pituitary to the
hypothalamus (1192, 1351). Therefore, because the ac-
tions of prolactin in the CNS can be due to the hormone
of pituitary or hypothalamic origin, in this review we refer
to its effects in the CNS without attributing a source.

2. Regulation of hypothalamic prolactin synthesis

Some well-established stimulators of pituitary pro-
lactin secretion also affect hypothalamic prolactin pro-
duction. For example, ovarian steroids modulate hypotha-
lamic synthesis and release of prolactin (436, 437).
Approximately 33% of the prolactin immunoreactive neu-
rons in the medial basal hypothalamus can be labeled
with [®H]estradiol (436), suggesting that these neurons
have estrogen receptors. Ovariectomy lowers hypotha-
lamic prolactin content, whereas estrogen replacement
elevates it (436, 437). Of the known hypophysiotrophic
factors, angiotensin II stimulates release of prolactin from
hypothalamic fragments (437), and intracerebroventricu-
lar injection of vasoactive intestinal peptide will increase
the amount of hypothalamic prolactin mRNA (212). How-
ever, other established stimulators of pituitary prolactin
secretion such as TRH are without effect (437). Obvi-
ously, much more work is needed to establish the control
of hypothalamic prolactin synthesis and release.

C. Placenta, Amnion, Decidua, and Uterus

The placenta, in addition to its bidirectional fetoma-
ternal metabolic transport functions, has a wide array of
endocrine functions as well. Among its many secretory
products are a family of placental lactogens found in the
rat (354, 393, 537, 744, 1487-1489, 1491, 1651), mouse
(1605, 1896), hamster (874, 1662-1664), cow (46, 1612),
pig (568), and human (728). The rat placenta produces a
bewildering array of prolactin-like molecules that bear
structural similarity to pituitary prolactin (1058, 1652).
These placental lactogens (PL) or prolactin-like proteins
(PLP) have been variously identified as PL-I, PL-II, PL-Im
(mosaic), PL-Iv (variant) (349, 1487, 1490), or PLP-A, -B,
-C, -D, -E, -F, and -G (356, 392, 851). In addition, the
placenta contains a lactogen known as proliferin (PLF)
(1056) and proliferin-related protein (PRP) (1057).

The decidua, on the other hand, produces a prolactin-
like molecule, that is indistinguishable from pituitary pro-
lactin in human (35, 342, 1475, 1707), but is somewhat
dissimilar in rat (688). A novel member of this family is
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prolactin-like protein J (17562), which is produced by the
decidua during early pregnancy. Each of these prolactin-
like molecules can bind to the prolactin-R (755, 860), and
their secretion is regulated by local decidual (638, 689,
729-731, 1745, 1746), but not hypothalamic (637) prolac-
tin-releasing factors (PRF). Progesterone has also been
identified as a potent stimulator of decidual prolactin
production (1143). In addition to stimulatory factors, a
substance with inhibitory activity is found in decidual
conditioned media (731). This substance decreases basal
decidual prolactin release and competes with the decid-
ual PRF (731). Recently, the N5 endometrial stromal cell
line, which expresses the prolactin gene driven by the
extrapituitary promoter, has been identified as a possible
model system to study decidual prolactin gene expression
(210). Ample evidence indicates that decidual prolactin
diffuses into the amniotic fluid (1473, 1474, 1476, 1501).
Although the function of amniotic prolactin is uncertain,
it has been suggested that it may serve an osmoregulatory
(1781), maturational (864), or immune (732) role in the
embryo/fetus.

Finally, the nonpregnant uterus has been shown to be
a source of prolactin as well. Indeed, a decidual-like pro-
lactin, indistinguishable from pituitary prolactin (611),
has been identified in the myometrium of nonpregnant
rats (1855). Interestingly, although progesterone stimu-
lates the production of decidual prolactin, it appears to be
a potent inhibitor of myometrial prolactin production
(611). The physiological role for myometrial prolactin has
yet to be identified.

D. Mammary Gland and Milk

Prolactin can be detected in epithelial cells of the
lactating mammary gland (1326) as well as in the milk
itself (680). There is little doubt that a portion of the
prolactin found in the milk originates in the pituitary
gland and reaches the mammary gland through the circu-
lation. Thus some of the prolactin found in milk is taken
up rather than produced by the mammary epithelial cells.
Indeed, a significant amount of radiolabeled prolactin
introduced into the circulation appears in milk (685,
1253). Apparently, prolactin reaches the milk by first
crossing the mammary epithelial cell basement mem-
brane, attaches to a specific prolactin binding protein
within the mammary epithelial cell, and is ultimately
transported by exocytosis through the apical membrane
into the alveolar lumen (1352, 1583).

In addition to uptake of prolactin from the blood, the
mammary epithelial cells of lactating animals are capable
of synthesizing prolactin. The presence of prolactin
mRNA (992, 1682) as well as synthesis of immunoreactive
prolactin by mammary epithelial cells of lactating rats has
been described (1063, 1064). It is possible that de novo
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synthesis of mammary prolactin requires a systemic tro-
phic factor since the amount of both prolactin mRNA and
immunoreactive prolactin declines over 24—48 h in mam-
mary gland explants (992). The mammary gland may also
act as a posttranslational processing site for prolactin. In
both human (499) and rat (888, 889) milk, the number of
prolactin variants far exceeds that found in serum. In-
deed, the mammary gland is the site of formation of the
important 16-kDa variant of prolactin mentioned previ-
ously (332). Although prolactin, produced locally by mam-
mary epithelial cells promotes proliferation, the 16-kDa
cleaved prolactin variant inhibits local angiogenesis,
which makes this proteolytic step a possible target of
breast cancer research (636).

The physiological role for milk-borne prolactin has
only been described in the rat, which is born immature
relative to many other mammals. Indeed, during a brief
window of neonatal life, the gastrointestinal tract lacks
the ability to digest protein and likewise possesses the
ability to absorb intact protein. This is particularly impor-
tant since the rat pituitary gland is relatively quiescent
during this period. Approximately 20% of the prolactin
ingested in milk passes to the neonatal circulation (686).
It has been shown that milk prolactin participates in the
maturation of the neuroendocrine (1596, 1629) and im-
mune (687, 702) systems.

E. The Immune System

A great deal of evidence suggests that lymphocytes
can be a source of prolactin as well (599, 882, 1214, 1516).
Indeed, immune-competent cells from thymus and spleen
as well as peripheral lymphocytes contain prolactin
mRNA and release a bioactive prolactin that is similar to
pituitary prolactin (445, 612, 613, 1214-1216, 1523). Not
only is an immunoreactive 22-kDa prolactin found in mu-
rine (1214) and human (1886) immune-competent cells,
but size variants of prolactin have been described as well
(1215, 1398, 1523, 1592).

Although the control of pituitary prolactin secretion
differs from that of lymphocytic origin, there is abundant
evidence that lymphocytes contain dopamine receptors
that may be involved in the regulation of lymphocytic
prolactin production/release (432). Pharmacological char-
acterization of lymphocytic dopamine receptors suggests
that rather than the classical D, type receptors found on
lactotrophs, both the D, and D5 predominate on lympho-
cytes (186, 187, 1361, 1470, 1545, 1824). Moreover, mRNA
for the Dy, D5, and D5 receptors have been identified in rat
Ilymphocytes (283).

The question remains of the role for pituitary and
Ilymphocytic prolactin in the immune response. It is inter-
esting to note that pituitary prolactin gene expression
(1601), bioassayable serum prolactin (1601), immunoas-
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sayable serum prolactin (1505), and lymphocyte number
(1505, 1601) are elevated during acute skin allograft re-
jection in mice. Administration of bromocryptine, a D,
receptor agonist, or antilymphocytic serum diminishes
circulating levels of prolactin in grafted animals and pro-
longs graft survival (1294, 1505). Because bromocryptine
has little direct effect on lymphocytic prolactin secretion
(1294), such data suggest that pituitary prolactin may
modulate the elaboration of lymphocytic prolactin and
that suppression of pituitary prolactin is thus a require-
ment for graft survival (1131). Indeed, such a role for
prolactin in transplant rejection warrants further investi-
gation.

F. Prolactin-Secreting Cell Lines

To study the synthesis, processing and secretion of
prolactin at the cellular and molecular level, cell lines
derived from pituitary tumors have been developed. The
first cell line was a mammosomatotroph (MtT/W5) iso-
lated from a radiation-induced pituitary tumor produced
in a Wistar-Furth rat (1724, 1907). Because these cell lines
secreted mostly growth hormone, they were designated
as GH cells. It was subsequently found that some of the
subclones were pluripotent and heterogeneous (1721,
1722). For example, GH; cells may release growth hor-
mone only (somatotrophs), prolactin only (mam-
motrophs), both hormones (mammosomatotrophs), or
neither hormone (189, 192). Similarly, the GH, and GH,C,
cell lines produce both prolactin and growth hormone but
in varying ratios (1721).

The most obvious advantage of using cell lines rather
than primary pituitary lactotrophs is that clonal cells are
usually immortal, can be easily stored, and thus provide a
perpetual supply of cells without sacrificing animals and
purifying primary pituitary cultures. To critically use
these cells, one should recognize their dissimilarity to
primary cultures of pituitary cells. For example, unlike
pituitary cells, the vast majority of the prolactin synthe-
sized by GH cell lines is rapidly released and not stored
(1722); thus there is no intracellular degradation of pro-
lactin (381). Moreover, GH cells lack functional dopamine
receptors, and thus they are resistant to the prolactin-
inhibiting actions of dopamine (538). This can be viewed
as either an advantage or a disadvantage. Because cell
lines lack the complete receptor repertoire of a normal
pituitary cell, one must be careful when drawing conclu-
sions that apply to normal lactotrophs on the basis of data
collected from cell lines. On the other hand, with knowl-
edge of the defect borne by cell lines, one can study the
role of an absent phenotype in control of cellular func-
tion. For example, one can transfect GH,C,; cells with a
dopamine receptor gene, thus isolating and examining the
role of that particular dopamine receptor subtype in lac-
totroph function (22, 244, 249, 491, 666, 1784, 1807, 1924).
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Not all clonal lactotroph lines deviate as markedly from
primary cells. For example, the MMQ cell line derived from
the estrogen-induced rat pituitary tumor 7315a secretes pro-
lactin exclusively, expresses functional dopamine D, recep-
tors (881), and behaves in a manner similar to (but not the
same as) that of normal lactotrophs (567, 699).

IV. PROLACTIN RECEPTORS

A. Prolactin Receptor: Gene, Splicing Variants,
and Isoforms

The prolactin-R is a single membrane-bound protein
that belongs to class 1 of the cytokine receptor superfam-
ily (131, 132, 926, 997). Just like their respective ligands,
prolactin and growth hormone receptors share several
structural and functional features despite their low (30%)
sequence homology (632, 633). Each contains an extra-
cellular, transmembrane, and intracellular domain (1899).
The gene encoding the human prolactin-R is located on
chromosome 5 and contains at least 10 exons (131, 132).
Transcriptional regulation of the prolactin-R gene is ac-
complished by three different, tissue-specific promoter
regions. Promoter I is specific for the gonads, promoter II
for the liver, and promoter III is “generic,” present in both
gonadal and nongonadal tissues (812). Numerous prolac-
tin-R isoforms have been described in different tissues
(24, 386, 1031). These isoforms are results of transcription
starting at alternative initiation sites of the different pro-
lactin-R promoters as well as alternative splicing of non-
coding and coding exon transcripts (809, 812). Although
the isoforms vary in the length and composition of their
cytoplasmic domains, their extracellular domains are
identical (184, 926, 1031). The three major prolactin-R
isoforms described in rats are the short (291 amino acids),
intermediate (393 amino acids), and long (591 amino ac-
ids) forms (184). In mice, one long and three short forms
have been described (338, 386). In addition to the mem-
brane-bound receptors, soluble prolactin-binding proteins
were also described in mammary epithelial cells (158) and
milk (1430). These soluble forms contain 206 NH,-termi-
nal amino acids of the extracellular domain of the prolac-
tin-R (159). The soluble prolactin binding proteins are
also products of the same prolactin-R gene, but it is still
uncertain whether they are results of alternative splicing
of the primary transcript or products of proteolytic cleav-
age of the mature receptor (or both) (184).

B. Activation of Prolactin-R and the Associated
Signal Transduction Pathways
1. Prolactin-R domains and receptor activation

A) EXTRACELLULAR DOMAIN: LIGAND-INDUCED DIMERIZATION.
The extracellular domain of all rat and human prolactin-R
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isoforms consists of 210 amino acids (196, 197) and shows
sequence similarities with other cytokine receptors (cy-
tokine receptor homology domain, CRH) (1872). The ex-
tracellular domain can be further divided into NH,-termi-
nal D1 and membrane-proximal D2 subdomains (926,
1872). Both D1 and D2 show analogies with the fibronec-
tin type III molecule, which drives the receptor-ligand
interactions in the majority of cytokine receptors (1872).
The most conserved features of the extracellular domain
are two pairs of disulfide bonds (between Cys'?-Cys? and
Cys®!-Cys®?) in the D1 domain and a “WS motif” (Tpr-Ser-
x-Trp-Ser) in the D2 domain (1872). The disulfide bonds
and the WS motif are essential for the proper folding and
trafficking of the receptor, although they are not respon-
sible for binding the ligand itself (632). Activation of the
prolactin-R involves ligand-induced sequential receptor
dimerization (184) (Fig. 1). Each prolactin molecule con-
tains two binding sites (site 1 involves helices 1 and 4,
while site 2 encompasses helices 1 and 3). First, prolac-
tin’s binding site 1 interacts with a prolactin-R molecule
(634). The formation of this initial hormone-receptor com-
plex is the prerequisite for the interaction of binding site
2 on the same prolactin molecule with a second prolactin-
R (184). Disruptive mutation of prolactin binding site 2 is
detrimental to prolactin-R activation, which can be initi-
ated only when a trimeric complex (2 receptors, 1 hor-
mone) is formed (184, 634).

B) INTRACELLULAR DOMAIN: ACTIVATION OF JAK2 AND RECEPTOR
PHOSPHORYLATION. I) Transmembrane and intracellular do-
mains. The role of the 24-amino acid-long transmem-
brane domain in the activation of prolactin-R is unknown
(184). The intracellular domain, however, is a key player
in the initiation of the signal transduction mechanisms
associated with the prolactin-R (184). The intracellular
domains are different in length and composition among
the various prolactin-R isoforms and show little sequence
similarities with other cytokine receptors (184). However,
there are two relatively conserved regions termed box 1
and box 2 (1260). Box 1 (Fig. 1) is a membrane-proximal,
proline-rich motif necessary for the consensus folding of
the molecule recognized by the transducing molecules
(184). Box 2 is less conserved and is missing in the short
isoform of the prolactin receptor (632, 926).

II) Activation of Jak2. Although the intracellular
domain of the prolactin-R is devoid of any intrinsic enzy-
matic activity, ligand-mediated activation of prolactin-R
results in tyrosine phosphorylation of numerous cellular
proteins (1479), including the receptor itself (926, 1267).
The membrane proximal region of the intracellular do-
main is constitutively (i.e., not induced by ligand binding)
associated with a tyrosine kinase termed Janus kinase 2
(Jak2) (266, 834, 1013). Phosphorylation of Jak2 occurs
within 1 min after prolactin binding, suggesting a major
upstream role for Jak2 (1014)(Fig. 1). Experimental data
suggest two major prerequisites for Jak2 activation: 1)
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FIG. 1. Mechanism of prolactin receptor activation. Activation of
receptor dimerization (184) driven by the prolactin molecule containing

prolactin-R involves ligand-induced sequential
two binding sites. First, prolactin’s binding site

1 interacts with a prolactin-R molecule (step I). The extracellular (EC) domain of all prolactin-R isoforms consists of

NH,-terminal D1 and membrane-proximal D2 subdomains (926), both of

which show analogies with the fibronectin type

IIT molecule driving the receptor-ligand interactions in cytokine receptors (1872). The formation of the initial hormone-
receptor complex induces the interaction of binding site 2 on the same prolactin molecule with a second prolactin-R
(184) (step 2). Although the intracellular (IC) domains of prolactin-R isoforms differ in length and composition, there are
two conserved regions, termed box 1 and box 2 (1260). Both the presence of the proline-rich box 1 (1014) and strict
homodimeric stoichiometry of prolactin-R dimers (550) are necessary for the activation of the tyrosine kinase termed
Janus kinase2 (Jak2), constituitively associated with the IC domain of the prolactin-R (1013). Jak2 kinases transphos-
phorylate each other (550) (step 2) and phosphorylate (P) the Tyr residues (Y) of the prolactin-R itself (step 3) (1514).
Although phosphorylation of Jak2 is a key event in the activation of all prolactin-R isoforms, Tyr phosphorylation of the
receptor itself does not occur upon activation of the short form of the prolactin-R, despite the presence of four Tyr

residues in its intracellular domain (660).

presence of the proline-rich box 1 motif in the intracellu-
lar domain of the prolactin-R (1014) and 2) homodimeric
stoichiometry of the ligand-induced prolactin-R dimers
(307, 549, 550). Although the association of Jak2 with
prolactin-R has been undoubtedly proven (266, 1013,
1515), the exact structure of their association is not
known. Although box 1 of the intracellular domain adopts
the typical SH3 (src kinase homology domain 3) folding
(1464), no matching SH3 region is found in the sequence
of Jak2, implying either the presence of an adapter pro-
tein or a mechanism different from the well-known SH3-
SH3 binding (1357a). Activation of Jak2 occurs by
transphosphorylation upon receptor dimerization, which
brings two Jak2 molecules close to each other (550).
Experiments with chimeric receptors suggest that mere
juxtaposition of box 1 regions does not guarantee Jak2
activation (306). Exact homology of the rest of the intra-
cellular domain is also required, suggesting the signifi-
cance of the COOH-terminal residues (550).

IIT) Phosphorylation of the prolactin-R. Jak2 kinases
transphosphorylate each other and are involved in the
phosphorylation of Tyr residues of the prolactin-R itself
(1514) (Fig. 1). Phosphotyrosines are of interest since
they are potential binding/docking sites for transducer
molecules containing SH2 domains. Although phosphory-

lation of Jak2 occurs in all active prolactin-R isoforms,
Tyr phosphorylation of the receptor itself does not occur
upon activation of the short form of the prolactin-R, de-
spite the presence of four Tyr residues in its intracellular
domain (660). Certain cellular functions, like prolifera-
tion, mediated by the short form of the prolactin-R, can
take place without prolactin-R phosphorylation (1906).
The long form of the prolactin-R also contains numerous
Tyr residues, many of which are phosphorylated upon
prolactin-R activation (1412).

2. Signal transduction pathways associated
with the prolactin-R

A) STAT PROTEINS. The signal transducer and activator
of transcription (STAT) protein family has been shown to
be a major transducer in cytokine receptor signaling
(834). The STAT family currently consists of eight mem-
bers. Four of them, STAT1, STATS, and especially STATbHa
and STATb5b, have been identified as transducer mole-
cules of the prolactin-R (631, 852). STAT contain five
conserved features: a DNA-binding domain, an SH3-like
domain, an SH2-like domain, and an NH,- and a COOH-
terminal transactivating domain (552). According to the
consensus model of STAT activation (184, 552), a phos-
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FIG. 2. Signal transduction pathways initiated by activation of the prolactin (PRL) receptor. Jak/STAT pathway:
members of the signal transducer and activator of transcription (STAT) protein family (834), STAT1, STATS3, STAT5a,
and STAT5b are the central transducer molecules of the signal transduction pathways initiated by prolactin-R (PRL-R)
activation (631, 852). STAT contain a DNA-binding domain, an SH3-like domain, an SH2-like domain, and an NH,- and
a COOH-terminal transactivating domain (552). A phosphorylated Tyr residue (Y) of the activated long prolactin-R
isoform interacts with the SH2 domain of a STAT. STAT, while docked at the receptor, is phosphorylated by the
receptor-associated Jak kinase. Then, phosphorylated STAT dissociates from the receptor and hetero- or homodimerizes
through its phosphotyrosine residues with the SH2 domain of another phosphorylated STAT molecule. Finally, the STAT
dimer translocates to the nucleus and activates a STAT DNA-binding motif in the promoter of a target gene (184), termed
GAS (y-interferon activated sequence) (791). The tyrosine residues of the short form of prolactin receptor are not
phosphorylated by Jak2, but the phosphotyrosine of Jak2 can serve as docking site for Statl (184). MAPK cascade:
activation of the prolactin-R also activates the mitogen-activated protein kinase (MAPK) cascade (1417), which is
involved in the activation of a wide range of transcription factors/immediate early genes by phosphorylation. Phospho-
tyrosine residues of the activated long prolactin-R isoform serve as docking sites for adapter proteins (Shc/Grb2/SOS)
connecting the receptor to the Ras/Raf/MAPK cascade (382). Novel data indicate communication between the Jak/STAT
and MAPK pathways (698). Ion channels: box 1 of the intracellular domain of prolactin-R is also involved in the activation
of a tyrosine kinase-dependent, calcium-sensitive K* channels through Jak2 (1435). The COOH terminal of prolactin-R’s
intracellular domain is involved in the production of the intracellular messengers [inositol 1,3,4,5-tetrakisphosphate (IP,)
and inositol hexakisphosphate (IP4)] that open voltage-independent Ca** channels (1452, 1659). Src kinases: prolactin
also induces the activation of members of the Src kinase family, c-src (150, 1658) and Fyn (20), which are involved in
the Tyr phosphorylation of phosphatidylinositol 3-kinase (PI3K) (152, 1453). Downregulation: Jak/STAT pathways can be
inhibited by SOCS (suppressors of cytokine signaling) which inhibit Jak kinases (503, 762, 1289, 1312, 1411, 1672) or CIS
(cytokine-inducible SH2-containing protein), which compete with STAT for docking sites on prolactin receptor (1144,
1914).
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phorylated Tyr residue of the activated cytokine receptor
interacts with the SH2 domain of STAT (Fig. 2). Then
STAT, while docked at the receptor, is phosphorylated by
the receptor-associated Jak kinase. The phosphorylated
STAT dissociates from the receptor and hetero- or ho-
modimerizes through its phosphotyrosine residues with
the SH2 domain of another phosphorylated STAT mole-
cule (184) (Fig. 2). Finally, the STAT dimer translocates to
the nucleus and activates a STAT DNA-binding motif in
the promoter of a target gene (184, 291). The consensus

DNA motif recognized by STAT1, STAT3, and STAT5 ho-
mo- or heterodimers is termed GAS (y-interferon acti-
vated sequence) (791) (Fig. 2). GAS consists of a palin-
dromic sequence: TTCxxxGAA (791). Numerous
promoters contain the GAS consensus motif, and multiple
cytokines have been shown to activate these promoters in
vitro (548, 658). It has been proposed that STAT interact
with other signal transducers (e.g., glucocorticoid recep-
tor) to initiate a cell- and cytokine-specific response
(1687, 1688).
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Of the STAT1, STAT3, and STAT5 proteins, STAT5
(earlier known as mammary gland factor, MGF) is recog-
nized as the most important transducer of the long and
intermediate isoforms of the prolactin-R (1060). STAT5
has two isoforms, STAT5a and STAT5b, encoded by two
different genes, with 95% sequence homology and differ-
ences only in the COOH-terminal domain. Both isoforms
possess a Tyr-694, which is phosphorylated by Jak2 (659).
In addition to Tyr phosphorylation, activation of STAT
involves serine/threonine phosphorylation as well. The
major difference between STATbHa and -b isoforms lies in
their serine/threonine phosphorylation sites (133). Pro-
tein kinase C (PKC)-a and casein kinase II have been
proposed as serine/threonine kinases activating STAT5
(133). Novel data indicate that STAT5 may fulfill inhibi-
tory roles in regulation of gene transcription (1088).

B) OTHER SIGNALING PATHWAYS. I) Ras/Raf/MAP kinase
pathway. Although Jak/STAT are the most important
pathways initiated by activation of the prolactin-R, a num-
ber of reports implicate activation of the mitogen-acti-
vated protein (MAP) kinase cascade as well (242, 345, 383,
384, 518, 1307, 1323, 1417). Phosphotyrosine residues of
the prolactin-R can serve as docking sites for adapter
proteins (Shc/Grb2/SOS) connecting the receptor to the
Ras/Raf/MAPK cascade (291, 382) (Fig. 2). Although ini-
tially the Jak/Stat and MAPK pathways were regarded as
independent or parallel pathways, there are data suggest-
ing that these pathways are interconnected (698).

II) Other kinases: c-src and Fyn. Several recent
reports indicate prolactin-induced activation of members
of the Src kinase family, c-src (150, 267, 1658) and Fyn
(31a) (Fig. 2). Recently, prolactin-induced rapid Tyr phos-
phorylation of insulin receptor substrate-1 (IRS-1) and a
subunit of the phosphatidylinositol (PI) 3’-kinase (103,
152, 1453) have been described. Both IRS-1 and PI 3'-
kinase seem to be associated with the prolactin-R com-
plex. It has been proposed that prolactin-induced activa-
tion of PI 3'-kinase is mediated by Fyn (31a) (Fig. 2).

1IT) Intracellular ion concentration. At least two
events and two regions of the prolactin-R are involved in
prolactin-induced ionic changes. Box 1 of the intracellular
domain of the prolactin-R is involved in the activation of
tyrosine kinase-dependent K™ channels by Jak2 (1435),
whereas the COOH terminal of the intracellular domain is
involved in the production of the intracellular messengers
{inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P,] and ino-
sitol hexakisphosphate (InsPg)} that open voltage-inde-
pendent Ca®>* channels (351, 1452, 1659) (Fig. 2).

C) DOWNREGULATION OF PROLACTIN-R SIGNAL: TYR PHOSPHA-
TASES AND INHIBITOR PROTEINS. Because activation of prolac-
tin-R results in Tyr phosphorylation of multiple signal
molecules, it is expected that inactivation of signaling
pathways involves Tyr phosphatases (184). Experimental
data indicate that SH2 containing Tyr phosphatases SHP-1
and SHP-2 play less of a role in downregulation of pro-
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lactin signaling than in GH or other cytokines (23, 147,
490, 1411, 1445, 1770).

A newly revealed facet of cytokine receptor signaling
is identification of SH2-containing protein families inhib-
iting the Jak/STAT pathways. These protein families are
referred to as cytokine-inducible SH2-containing protein
(CIS) (1042, 1144, 1914) and suppressors of cytokine sig-
naling (SOCS) (503, 762, 1289, 1312, 1672). Their main
mechanism of action in prolactin receptor signaling has
been recently characterized (1411). The data indicate that
prolactin induces acute and transient expression of
SOCS-1 and SOCS-3 (1411). SOCS-1 and SOCS-3 switch
off the prolactin receptor-mediated signaling by inhibiting
the catalytic activity of Jak2 and activation of STAT pro-
teins (1411). The CIS and SOCS-2 genes respond with
prolonged activity to prolactin administration, and
SOCS-2 seems to restore the cells’ sensitivity to prolactin
receptor stimulation probably by suppressing SOC-1’s in-
hibitory effect (1411).

C. Distribution of Prolactin-R

1. Subcellular distribution: surface targeting,
internalization, and nuclear translocation
of prolactin-R

For proper surface targeting, glycosylation of the
asparagyl residues (Asn®, Asn®, Asn'%®) of the extracel-
lular domain of the prolactin-R is crucial, although not an
absolute requirement for prolactin-R activation (256). Al-
though prolactin-R is mainly a cell-surface receptor, de-
glycosylated forms of prolactin-R can accumulate in the
Golgi apparatus (256). Nitric oxide activates N-acetylglu-
cosamine transferase, which is responsible for glycosyla-
tion of these intracellular receptors and promotes migra-
tion of these newly glycosylated receptors to the cell
surface (183).

Earlier, endocytosis of prolactin and prolactin-R had
been shown in several cell types (149, 447, 877). Surpris-
ingly, even translocation of prolactin (1451) and prolactin-
R to the nucleus has been demonstrated in different cell
types (344, 1028, 1450). Nuclear translocation of prolac-
tin-R can be accompanied by nuclear actions like stimu-
lation of PKC (241, 343, 1449). Because activation of
“classical” cytokine signaling pathways (Jak/STAT, MAP
kinase) (1404) do not require nuclear translocation of
prolactin-R, the mechanism and in vivo importance of
prolactin-R internalization and nuclear actions still re-
main to be determined.

2. Distribution of prolactin-R in the mammalian body

It is not surprising that prolactin-R and its message
are found in the mammary gland and the ovary, two of the
best-characterized sites of prolactin actions in mammals
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(1268). What may be truly surprising is that the receptor
and its mRNA are also found in numerous parts of the
CNS. The distribution of mRNA for the long form of the
prolactin-R has been characterized in the rat brain (112).
Abundant message is found in the choroid plexus, bed
nucleus of the stria terminalis, amygdala, the central gray
of the midbrain, thalamus, hypothalamus, cerebral cortex,
and olfactory bulb (586, 587). Recently, prolactin binding
sites have been described in the area postrema, which is
one of the main chemosensitive areas of the brain lacking
the blood-brain barrier (1112). Prolactin receptors are
also present in a wide range of peripheral organs like the
pituitary gland, heart, lung, thymus, spleen, liver, pan-
creas, kidney, adrenal gland, uterus, skeletal muscle, and
skin (184, 1268).

V. BIOLOGICAL ACTIONS OF PROLACTIN

Our goal in this section is to summarize the most
relevant actions of prolactin in the mammalian body. An
extensive summary of prolactin’s effects in different ver-
tebrate species and organ systems can be found in the
recent review written by Kelly et al. (184).

A. Reproduction

Prolactin is best known for the multiple effects it
exerts on the mammary gland. However, it also exerts
effects on other targets important to the reproduction of
the mammalian species. In some mammals, particularly
rodents, prolactin is also important for the maintenance
and secretory activity of the corpus luteum. It also affects
other actions related to reproduction such as mating and
maternal behaviors.

1. Lactation

The varied effects of prolactin on the mammary gland
include growth and development of the mammary gland
(mammogenesis), synthesis of milk (lactogenesis), and
maintenance of milk secretion (galactopoiesis).

Although it has long been accepted that prolactin is
involved in the development of the mammary gland (154),
recent elegant techniques have confirmed such findings.
Indeed, targeted disruption of the prolactin gene (prolac-
tin knockout) (790) or knockout of the prolactin receptor
(1358) results in abnormal mammogenesis characterized
by complete absence of lobuloalveolar units in adult ho-
mozygous females. Prolactin knockout heterozygotes ap-
pear to have nearly normal mammogenesis that is indis-
tinguishable from wild type (790). Transplantation of
mammary epithelium from prolactin receptor knockouts
into mammary fat pads of wild-type mice revealed that
prolactin affects mammary morphogenesis in two differ-
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ent ways: it controls ductal side branching and terminal
end bud regression in virgin animals via indirect mecha-
nisms, but acts directly on the mammary epithelium to
produce lobuloalveolar development during pregnancy
(223). Lactogenesis clearly requires pituitary prolactin,
since hypophysectomy during pregnancy prevents subse-
quent lactation (1306). Due to impairment of mammogen-
esis, both prolactin knockout (790) and prolactin receptor
knockout (1358) homozygous mice fail to produce milk.
Interestingly, although the heterozygous prolactin knock-
outs have normal mammogenesis (790), the F, generation
heterozygous prolactin receptor knockouts are unable to
lactate for their first litter (1358). However, milk is deliv-
ered perfectly normally to the F,’s second litter (1358).
The phenotype of the F, generation was similar (1358).
With further reproductive cycles, mammogenesis in both
the F'; and F, generations proceeds sufficiently to support
lactation, indicating that the defect in heterozygotes is
one affecting the rate of mammary gland development.
These experiments further indicate that two functional
alleles of the prolactin receptor are required for full lac-
tation.

Although there are dramatic differences between
mammals in the hormonal requirements for galactopoie-
sis, the common absolute requirement is prolactin. Aque-
ous extracts of anterior pituitary gland containing prolac-
tin (1093) initiate lactation in pseudopregnant rabbits
(1694). Replacement of prolactin to hypophysectomized
rabbits will fully restore lactation (364). On the other
hand, while hypophysectomy of rats and mice stops lac-
tation (1587), the replacement cocktail should minimally
consist of prolactin and glucocorticoid or adrenocortico-
trophin to maintain sufficient nurturing of the pups (173).
Addition of growth hormone permits the maintenance of
maximal lactation (1094).

It should be noted that none of these actions is solely
due to prolactin, but the hormone is merely a player in an
orchestra of hormones and growth factors that affect the
mammary gland. A great deal of evidence from hypoph-
ysectomized-ovariectomized-adrenalectomized rodents
suggests that the mammary gland’s lobuloalveolar growth
and development in vivo requires prolactin, estrogen, pro-
gesterone, and glucocorticoids (837). During pregnancy,
the extensive branching of the ducts and development of
the alveoli is a function of progesterone and prolactin or
placental lactogen (837). There is evidence that insulin,
growth hormone, thyroid hormone, parathyroid hormone,
calcitonin, several growth factors, and even oxytocin may
also play a role in galactopoiesis in various mammals
(1779).

In the process of lactogenesis, prolactin stimulates
uptake of some amino acids, the synthesis of the milk
proteins casein and a-lactalbumin, uptake of glucose, and
synthesis of the milk sugar lactose as well as milk fats
(118, 1779).
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Controlled exclusively by promoter III of the rat pro-
lactin-R gene (812), the mammary gland expresses mainly
the long form of prolactin-R (1268). The activation of
promoter III involves binding of C/ERBB (CCAAT-en-
hancer binding protein) and Sp1 (recognizing GC boxes of
DNA) transcription factors to their respective binding
elements and activation of a downstream sequence ele-
ment resembling the consensus AP2 binding site (812). As
in vitro studies indicate (750) and in vivo studies confirm
(854), prolactin-R in the mammary gland is phosphory-
lated upon prolactin binding (1868) and activates the
Jak2/STAT5 pathway responsible for both mammo- and
lactogenesis. STAT5 (especially STAT5a) activated by the
long form of the prolactin-R induces transcription of milk
protein genes (151). Null mutation of the STATb5a or
STATbHb gene is detrimental to tubuloalveolar develop-
ment of the mammary gland and results in inability to
lactate in homozygous (—/—) females (184). The signal
transduction pathways over which prolactin induces
mammary gland growth and development have been ex-
tensively studied in vitro and reviewed recently (750).

2. Luteal function

Actions of prolactin on luteal function depend on
species and the stage of the estrous cycle. In rodents,
prolactin can either be luteotrophic after mating or luteo-
Iytic in the absence of a mating stimulus.

In most rodents, prolactin acts as a luteotrophic hor-
mone by maintaining the structural and functional integ-
rity of the corpus luteum for 6 days after mating (1232).
This “luteotrophic” action of prolactin, which has been
best described in the rat, is characterized by enhanced
progesterone secretion (5680). Progesterone is essential
for the implantation of the fertilized ovum (along with
estrogen), maintenance of pregnancy, and inhibition of
ovulation (580). In the absence of prolactin, the dominant
steroid produced by the corpus luteum of the rat is 20«-
hydroxyprogesterone, whose synthesis from progester-
one is catalyzed by 20a-hydroxysteroid dehydrogenase
(1508). This metabolite of progesterone is “inactive” in
most progesterone bioassays. Prolactin enhances proges-
terone secretion two ways: prolactin potentiates the ste-
roidogenic effects of luteinizing hormone (LH) in granu-
losa-luteal cells (1471) and inhibits the 20a-
hydroxysteroid dehydrogenase enzyme, which inactivates
progesterone (580). In other rodents such as hamsters,
prolactin is part of a “luteotrophic complex” consisting of
LH, follicle stimulating hormone (FSH), and prolactin
(672). There is some evidence that prolactin may also be
part of a luteotrophic complex in dogs (1322) and pri-
mates (1472). In humans, high levels of prolactin inhibit
granulosa cell luteinization (10, 1170) and steroidogenesis
(1017). Further evidence of luteal dependence on prolac-
tin is found in prolactin receptor knockouts who lack
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normal luteal function and thus are sterile due to de-
creased ovulation rate, aberrant oogenesis, and implanta-
tion failure (184). Prolactin is essential for progesterone
biosynthesis and luteal cell hypertrophy during preg-
nancy. In addition to luteal function, the prolactin-R me-
diates numerous functions in granulosa cells and oocytes
as well (184).

Aside from its luteotrophic role, there is evidence in
the rat that prolactin may be luteolytic as well (1111,
1887) by inducing programmed cell death in the corpora
lutea (901, 1156). Prolactin’s luteolytic effect seems to be
mediated by CD3-positive lymphocytes, which increase
the expression of the membrane form of the Fas ligand,
known to mediate luteal cell death through the Fas recep-
tor (989). In the rat, as many as three generations of
corpora lutea may appear on the ovary. There is evidence
that prolactin may perform a “housekeeping function” by
inducing the structural regression of the oldest of these. It
should be emphasized that the corpora lutea are nonfunc-
tional at the time that prolactin exerts this effect. The
mechanism by which prolactin can be both luteotrophic
and luteolytic is still uncertain. One suggestion is that at
some critical time between periods of exposure to pro-
lactin during the estrous cycle, the corpora lutea of the rat
acquire the capacity to express monocyte chemoattrac-
tant protein-1, which subsequently interacts with prolac-
tin on proestrus to induce luteal cell death (200, 1773).

Both short and long isoforms of the prolactin-R are
present in the ovaries (337, 1621). Transcription of the
prolactin-R in the ovaries is controlled by intricate devel-
opmental and hormonal regulation (340, 1730). Regula-
tion of transcription of the prolactin-R gene in the ovaries
is accomplished by the gonad-specific promoter I and the
“generic” promoter III. Essential transcriptional activator
of prolactin-R’s promoter I is steroidogenic factor-1 (SF-
1)-binding consensus element, which is activated by SF-1
(810, 811). SF-1 is a specific zinc finger DNA binding
protein, also known as Ad4BP (1089).

Recently, expression of a prolactin-R associated
phosphoprotein (PRAP) has been described in luteal cells
(468). PRAP binds to the intracellular domain of the long
form of the prolactin-R, but not to the short form. Expres-
sion of PRAP is upregulated by estrogen and prolactin
(469). Structurally, PRAP shows 89% homology with a
newly characterized form (type 7) of 17B-hydroxysteroid
dehydrogenases/17-ketosteroid reductases (17-HSD), sug-
gesting that PRAP may be an enzyme catalyzing the con-
version of estrone to estradiol (1324).

3. Reproductive behavior

A) FEMALE RECEPTIVITY. There are data suggesting that
prolactin influences reproductive behavior (476). In hu-
mans, high prolactin levels are associated with psychoso-
matic reactions including pseudopregnancy (1653). There
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are prolactin-R in the ventromedial nucleus of the hypo-
thalamus (375), an area which controls female sexual
behavior. Coincidentally, iontophoresis of prolactin to
this area increases local neuronal electrical activity (743).
However, in rats, prolactin’s precise action has been con-
founded by the multiplicity of experimental designs. For
example, when given in the third ventricle of estrogen and
progesterone-primed ovariectomized rats, prolactin di-
minishes lordosis frequency, an index of sexual receptiv-
ity (470). Though, when given in the midbrain of estradiol-
treated ovariectomized rats, prolactin enhances sexual
receptivity (738). Enhancement of endogenous prolactin
secretion in response to dopamine antagonism has been
reported to have no effect on mating behavior in females
(1654), whereas elevation of prolactin secretion in re-
sponse to the nursing stimulus diminishes sexual behav-
ior (1655). In contrast, when the rat is sexually receptive
in the afternoon of proestrus, suppression of the sponta-
neous release of prolactin with a dopamine agonist dra-
matically attenuates sexual receptivity (1884). Finally, al-
though a null mutation of the prolactin-R gene in the
mouse produces most of the defects associated with a
deficiency of prolactin, such receptor-deficient females
appear to mate normally with heterozygote or wild-type
males (1358, 1680). Thus these data, taken together, do
not provide a firm basis for assigning a well-defined role
for prolactin in female sexual behavior. In contrast, it is
clear that prolactin suppresses stereotypical male sexual
behavior in rats (451, 896) and sheep (629).

B) PARENTAL BEHAVIOR. Probably the best-characterized
prolactin-driven behaviors are the parental behaviors. In
mammals, maternal behavior is the most extensively stud-
ied (218, 221, 1086, 1530). These include nest building as
well as gathering, grouping, cleaning, crouching over, and
nursing of the young by the mother. Although most widely
described in rats, there is also an extensive literature on
the effects of prolactin on the induction and maintenance
of these maternal behaviors in mice, rabbit, hamsters, and
sheep (219, 1329). It should be emphasized that prolactin,
by itself, does not initiate maternal behavior, but merely
decreases the latency to the onset of maternal behavior.
Intracerebroventricular infusion of prolactin decreases
the latency to initiation of maternal behavior in steroid-
primed rats (220). The basic observation was made that
nulliparous female rats treated with a pregnancy-like reg-
imen of estrogen and progesterone for 10 days showed
maternal behaviors with a mean latency of 5-6 days.
Superimposition of prolactin treatment on the ovarian
steroid regimen reduces the latency of maternal behavior
to 1-2 days (217). In addition, hypophysectomized rats
failed to display a facilitation of maternal behavior in
response to the sequential steroid treatment. On the other
hand, prolactin-hypersecreting pituitary transplants
placed beneath the kidney capsule of hypophysectomized
female rats kept on a maternal ovarian steroid replace-
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ment regimen, dramatically advanced the onset of mater-
nal behaviors (218). Suppression of endogenous prolactin
release with bromocryptine prevents the onset of mater-
nal behavior, whereas superimposition of prolactin pro-
motes it (222). Prolactin may be exerting this effect by
acting within the medial preoptic area of the hypothala-
mus (220, 1701).

Pup contact has been shown to induce transcription
of the long-form prolactin-R mRNA in the brain of female
rats. The effect of pup contact on prolactin-R expression
is prevented by ovariectomy and hypophysectomy (1701).
It seems that the effect of pup contact is not sex specific;
the same induction of brain prolactin-R long-form mRNA
expression and maternal behavior can be observed in
pup-contacted male rats. Administration of prolactin pro-
motes, while female contact suppresses, the effect of pup
contact in males (1530). In mice carrying a germ line null
mutation of the prolactin receptor gene, homozygous mu-
tant and heterozygous mutant nulliparous females show a
deficiency in pup-induced maternal behavior (1086).
Moreover, primiparous heterozygous females exhibit a
profound deficit in maternal care when challenged with
foster pups. Such data suggest that pup contact is re-
quired for transcription of the prolactin receptor whose
stimulation by prolactin eventuates in maternal behavior
(1086).

Although not as widely studied, prolactin may have a
role in paternal care as well. The data for this role are
most convincing in fish and birds but somewhat less
convincing in mammals (1574). Indeed, because prolactin
is an “old” hormone, it could be that this role in our most
recent ancestors has become somewhat redundant. This
is emphasized by the significant stereotypical paternal
role of nonmammalian vertebrates (e.g., the male sea
horse is the incubator) and the almost nonexistent role in
most mammals.

C) PROLACTIN-R IN THE HYPOTHALAMUS. Although the brain
contains mainly the long isoform of the prolactin-R, the
hypothalamus contains both the long and short forms
(323). Within the hypothalamus, prolactin-R mRNA-con-
taining neurons have been found in the anterior as well as
the mediobasal hypothalamus (323-325). Also, the mRNA
of the long form of prolactin-R is found within the
periventricular, paraventricular, supraoptic, arcuate, and
ventromedial nuclei of the hypothalamus as well as the
medial preoptic area (112). Immunocytochemical data
support these observations by showing that these hypo-
thalamic areas contain prolactin-R protein as well (1028,
1415, 1495). Expression of prolactin-R in the brain in-
creases with age (325, 993, 1241), exposure to estrogens
(1264, 1598), elevation in serum prolactin levels, and by
pup contact (1700).

Few studies have examined the signal transduction
pathways specifically activated upon binding of prolactin
to its receptor in the CNS. Preliminary data from our
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laboratory indicate that systemic administration of pro-
lactin results in nuclear translocation of STAT5 in neu-
rons of the mediobasal hypothalamus. This suggests that
the signal transduction pathways coupled to prolactin-R
in CNS neurons are similar to those described in periph-
eral tissues. Prolactin also increases the expression of
NGFI-A, NGFI-B, c-fos, and c-jun in numerous popula-
tions of CNS neurons, among them the tuberoinfundibular
(TIDA) neurons of the arcuate nucleus (1524).

B. Homeostasis

Aside from its actions on reproductive processes,
prolactin plays a role in maintaining the constancy of the
internal environment by regulation of the immune system,
osmotic balance, and angiogenesis.

1. Immune response

Prolactin is a common mediator of the immunoneu-
roendocrine network, where nervous, endocrine, and im-
mune systems communicate with each other (631). Pro-
lactin plays a significant role in regulation of the humoral
and cellular immune responses in physiological as well as
pathological states, such as autoimmune diseases (253,
1295, 1850).

The earliest evidence that prolactin plays a role in the
immune response was the demonstration in 1972 that
exogenous prolactin enhanced thymic function in prolac-
tin-deficient dwarf mice (314). Shortly thereafter, Nagy
and Berczi (1269) found that hypophysectomy or suppres-
sion of prolactin secretion with bromocryptine (1273) led
to attenuation of humoral or cell-mediated immunity that
could be reversed by treatment with exogenous prolactin.
A large number of immune perturbations were found to
be associated with prolactin deficiency (148, 1269-1273).

As noted in two recent reviews (1145, 1871), prolac-
tin stimulates mitogenesis in both normal T lymphocytes
(1828) and the Nb2 lymphoma cell line (1622). It should
not be surprising that prolactin affects lymphocytes since
prolactin-R has been detected on human peripheral lym-
phocytes (1517-1519) and their mRNA expression is reg-
ulated by prolactin itself (442). Moreover, effects of pro-
lactin on lymphocytes may involve interleukin (IL)-2 since
T-lymphocyte activation by IL-2 requires prolactin (344,
712). Interestingly, prolactin’s site of action for modifying
the effects of IL-2 on lymphocytes appears to be the
nucleus (343). Prolactin is also required for mitogen-stim-
ulated proliferation of lymphocytes (741, 757, 758). Nb2
cells, derived from immature T lymphocytes, are depen-
dent on the mitogenic activity of prolactin (1622, 1713).
Indeed, this property has served as the basis for a highly
sensitive, specific bioassay for prolactin. However, there
is not uniform agreement on the role of prolactin in
hematopoiesis. Although targeted disruption of the pro-
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lactin gene leads to numerous defects in prolactin-depen-
dent events such as lactation, there is no difference be-
tween homozygotes and heterozygotes in the frequency of
B- and T-cell antigen expression (790). Such results argue
that prolactin does not play an indispensable role in pri-
mary lymphocyte differentiation or its absence during
development can be compensated by other factors.

The role of prolactin in the immune response of the
organism is a matter of continuing concern. It appears
that immune responses in vivo are enhanced by prolactin.
For example, prolactin-secreting pituitary grafts placed
beneath the kidney capsule (1270) or administration of
prolactin (1272) restores dinitrochlorobenzene-induced
contact dermatitis impaired by hypophysectomy. On the
other hand, skin allograft transplants elevate serum pro-
lactin (725). During graft rejection, lymphocytic prolactin
gene expression is also upregulated (1601). Moreover,
elevated serum prolactin levels induced by skin allografts
can be suppressed by either bromocryptine or an antilym-
phocytic serum (1505). However, only antilymphocytic
serum prolongs the survival time of the graft (1505).
These data suggest that lymphocytic prolactin plays a
specific role in skin graft rejection and may play a role in
other transplantation responses as well (764).

Immunocytochemical demonstration of prolactin-R
on T and B lymphocytes (1769) was followed by detection
of mRNA encoding the short and long prolactin-R iso-
forms in the thymus, spleen, lymph nodes, and bone
marrow of both rats and mice (1020). Expression of pro-
lactin-R isoforms was more extensively mapped in rat
splenocytes and thymocytes from birth to adulthood
(703), as well as during the estrous cycle, pregnancy, and
lactation (704). Prolactin’s functions are the most exten-
sively described and reviewed in the Nb2 cell line (1920).
This cell line also expresses an intermediate (393 amino
acid) isoform of prolactin-R (184). In Nb2 lymphocytes,
activation of the prolactin-R is associated with (945) 1)
rapid tyrosine phosphorylation of STATbHa, STAT5b,
STAT1la, and STATS; 2) rapid and selective formation of
STAT5a/b heterodimers; 3) marked Ser, but not Thr phos-
phorylation of STAT5a and STAT5b; and 4) the appear-
ance of two qualitatively distinct STAT5 protein com-
plexes that discriminate between oligonucleotides
corresponding to the prolactin response elements of the
B-casein and interferon regulatory factor-1 gene promot-
ers (945).

2. Osmoregulation

One of the least understood actions of prolactin is
regulation of solute and water transport across mamma-
lian cell membranes (1602). Studies in this area were
motivated by the finding in lower vertebrates that prolac-
tin stimulates solute transport across cell membranes and
thus could be an osmoregulatory hormone (153). Some of
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the actions in mammals are easier to envision in a phys-
iological perspective than others. For example, prolactin
exerts a host of activities on transport of solute across
mammary epithelial cell membranes. In keeping with its
lactogenic properties, among the earliest discoveries was
the observation that prolactin decreases the transport of
sodium and increases the transport of potassium across
mammary epithelial cells taken from bromocryptine-
treated rabbits (534, 535). Similarly, prolactin stimulates
the uptake of amino acids by the rat mammary gland
(1825) as well as the uptake of the nonmetabolizable
amino acid a-aminoisobutyric acid by mouse mammary
explants (1480). The requirement of such prolactin-driven
solute movement for lactation has not been described.
Prolactin also affects water transport across amniotic
membranes. It stimulates water transport across guinea
pig and sheep amnion (1114) but inhibits it in human
amnion (1026). Prolactin is responsible for fluid (1447),
sodium, chloride (1102-1104), and calcium (1365) trans-
port across intestinal epithelial membranes. Correlation
between sweat chloride and prolactin concentrations
(1492) may implicate prolactin as one of the possible
pathogenic factors in cystic fibrosis (968).

Although not examined in a systematic manner, it
seems likely that the enhanced solute transport during
late pregnancy (205) might be a mechanism whereby
prolactin contributes to the preparation by the pregnant
mother for subsequent lactation. A similar teleological
argument can be made for the observation that prolactin
acts on the proximal convoluted tubule of the renal
nephron to promote sodium, potassium, and water reten-
tion (1685). These data, taken together, argue for the need
for systematic studies on the role of prolactin on fluid and
solute transport in a physiological context.

3. Angiogenesis

Angiogenesis, the development of blood vessels, is
inhibited by proteolytic fragments of native prolactin
(333). This antiangiogenic activity is inherent to the 16-
kDa fragment (334). In fact, there are specific, high-affin-
ity, saturable binding sites for the 16-kDa fragment of
prolactin on capillary endothelial cells (336). The 14-kDa
fragment shares the antiangiogenic activity of the 16-kDa
fragment (335). In contrast, it has recently been found
that intact human prolactin, placental lactogen, and
growth hormone have angiogenic activities (1695). Al-
though a physiological significance has not been ascribed
to these opposing effects, it seems likely that there may
be a therapeutic use for prolactin fragments as local
inhibitors of tumorigenesis, or conversely, a role as patho-
logical effector through its antiangiogenic actions.
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VI. PATTERNS OF PITUITARY
PROLACTIN RELEASE

When the release of prolactin is assessed at the sin-
gle-cell level, the pattern of prolactin secretion of individ-
ual lactotrophs shows sexual dimorphism. In general,
slightly more than half the lactotrophs of female rats
secrete prolactin in a continuous pattern, whereas those
of males secrete in a discontinuous or intermittent pattern
(297). In the following sections we summarize the pat-
terns of prolactin secretion at the level of the whole
organism under different physiological and experimental
conditions.

A. Circadian Rhythm of Prolactin Secretion

Plasma concentrations of prolactin are the highest
during sleep and the lowest during the waking hours in
humans (1380, 1555). Recent human volunteer experi-
ments prove, however, that this rhythm of prolactin se-
cretion is maintained in a constant environment indepen-
dent of the rhythm of sleep (1848), although with
considerably larger amplitude in women than men. These
data indicate that the rhythm of daily prolactin release in
humans is a true circadian rhythm that may be generated
by the suprachiasmatic nuclei of the hypothalamus
(1848).

There is ample chronobiological evidence that the
temporal organization of prolactin secretion is controlled
by circadian input in rats as well (167, 951). The rhythm of
prolactin release is maintained in constant environment
and abolished by lesion of the suprachiasmatic nuclei in
rats (167, 168). In contrast to humans, there is a tight
relationship between sleep patterns and prolactin levels
in rats. Experimental data suggest that high prolactin
levels may be the cause rather than the result of change in
sleep patterns. In rats, using either injection of prolactin
(1496) or implantation of anterior pituitary grafts to ren-
der the animal hyperprolactinemic (1332), high prolactin
levels increase the duration and frequency of rapid-eye-
movement sleep (REMS), thus leading to the idea of a
functional relationship between nocturnal elevations of
prolactin and REMS. There is some evidence that vasoac-
tive intestinal polypeptide (VIP), a potent prolactin-releas-
ing peptide, may also be involved in REMS (863, 1333).
Immunoneutralization of circulating prolactin blocks sys-
temically administered VIP-enhanced REMS (981, 1331).
However, immunoneutralization of endogenous circulat-
ing prolactin only slightly attenuates spontaneous REMS,
suggesting that central rather than systemic prolactin may
be the physiological effector (981, 1331). Release of pro-
lactin associated with REMS was also described in hu-
mans (1556). However, slow-wave sleep (SWS) (1848)
also appears to be associated with nocturnal prolactin
secretion in humans (1055).
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There is ample evidence (see sect. viiA1a) that dopa-
minergic tone of hypothalamic origin that exerts inhibi-
tory effect over prolactin secretion (140) also changes
throughout the day (420, 1027). It has been shown that
dopaminergic activity in the median eminence shows
daily changes, strongly suggesting a daily rhythm of do-
pamine levels in the long portal vessels reaching the
anterior lobe of the pituitary gland (1101, 1606, 1903).
According to this daily rhythm, the dopaminergic tone of
TIDA neurons decreases before the daily elevation in
prolactin levels (1101). The presence of this daily rhythm
of TIDA neuronal activity in female rats has been verified
with various ovarian steroid backgrounds (1606, 1607,
1903). It has been demonstrated that a similar pattern in
immediate early gene expression exists in neuroendo-
crine dopaminergic neurons of female rats in various
reproductive states (1027, 1029). These data, as well as
experiments conducted in constant environment and ma-
nipulations of suprachiasmatic input (1101, 1100, 1606),
strongly suggest that the daily rhythm exhibited by neu-
roendocrine dopaminergic neurons is endogenous in na-
ture and entrained by light.

Hypothalamic oxytocin, which has been identified as
a potential PRF, plays an important role in maintaining
the endogenous prolactin-stimulatory rhythm (71, 73, 75—
77). Indeed, in rats treated with a dopamine antagonist at
various times of day to unmask a rhythm of prolactin
secretion (71), administration of an oxytocin antagonist
abolishes the rhythm (74). Since these initial findings,
numerous other candidates of central origin have
emerged as possible regulators of circadian release of
pituitary prolactin (813, 1858, 1912, 1919).

B. Patterns of Prolactin Secretion in Different
Reproductive States

1. Lactation

The best-known physiological stimulus affecting pro-
lactin secretion is the suckling stimulus applied by the
nursing young. This has been characterized as a classical
neuroendocrine reflex. Just as muscle contraction evoked
by an electrochemical stimulus is described as a stimulus-
contraction reflex, one can describe the release of pro-
lactin in response to the nursing young as a stimulus-
secretion reflex. In rats, blood prolactin concentrations
begin to rise within 1-3 min of initiation of nursing, peak
within 10 min, are sustained at a constant level as long as
nursing continues, and fall when nursing is terminated
(684). The expression of prolactin mRNA in the pituitary
gland follows the same pattern (1016). Cessation of the
suckling stimulus results in termination of prolactin se-
cretion, and the rate of decrease in blood prolactin levels
is proportional to the metabolic clearance rate of the
hormone (683, 1274). Moreover, the amount of prolactin
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released is related to the intensity of the stimulus as it is
somewhat commensurate with the number of pups nurs-
ing (1182). These parameters appear to be similar in all
mammals with only subtle exceptions. For example, in
the rhesus monkey, nursing induces a biphasic release of
prolactin (575). In humans (443, 1683), cattle (1019), and
rodents (78, 887), the prolactin-secretory response to
nursing is superimposed by the endogenous circadian
rhythm of prolactin secretion; that is, the same intensity
of suckling stimulus can elevate prolactin levels more
effectively at certain times of day when the circadian
input enhances the suckling stimulus-evoked secretory
response.

The control of suckling-induced prolactin secretion
is somewhat enigmatic. It is certain that the suckling
stimulus results in a diminution of the amount of dopa-
mine released into portal blood (404) and arriving at the
anterior pituitary gland (1281). Thus the suckling stimulus
essentially relieves the lactotroph from tonic inhibition.
However, the amount of prolactin released in response to
suckling is far greater than that resulting from pharmaco-
logical or surgical interference with dopamine input to the
pituitary gland. This argues for a prolactin-releasing input
superimposed on the diminution of the inhibitory input
provided by suckling-induced suppression of dopamine.
Indeed, there are many candidates for a PRF stimulated
by suckling. For example, passive immunization against
TRH inhibits suckling-induced prolactin release (405,
1603). However, the supremacy of TRH in regulating suck-
ling-induced prolactin release is not universally accepted
(1481). The intriguing observation that posterior pituitary
lobectomy abolishes suckling-induced prolactin secretion
has led to the suggestion that the posterior lobe transfers
a PRF to the anterior lobe through the short portal vessels
(827, 827, 1256). The identity of the posterior pituitary
PRF has eluded many investigators. Among the obvious
candidates for PRF are vasopressin (1283) and its glyco-
peptide vasopressin-neurophysin precursor (1276, 1277),
oxytocin (76, 78) and even dopamine of posterior pitu-
itary origin (1281). However, there is not universal agree-
ment on the candidacy of the vasopressin-neurophysin
glycopeptide (829), and there is some indication that the
PRF may be a heretofore unidentified posterior pituitary
(27, 766, 1059) or intermediate lobe (27) peptide. It is safe
to say at this time that, although we have several plausible
candidates, none has emerged as the undisputed suckling-
induced PRF.

2. Estrous and menstrual cycles

The secretion of prolactin has been most extensively
studied during the estrous cycle of the rat. The secretion
of prolactin throughout most of the estrous cycle appears
low and unchanging from the evening of estrus through
the morning of the next proestrus (254, 608, 1296, 1647).
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During the afternoon of proestrus, a preovulatory surge of
prolactin secretion occurs, which is similar in timing to
that of LH (1647). Although the LH surge on proestrus is
symmetrical, the surge of prolactin consists of a rapid,
sharp peak followed by a prolonged plateau and an ex-
tended termination phase (60, 1259). Although most lab-
oratories have reported a single surge of prolactin on
proestrus (608, 1296, 1647), others have reported a sec-
ondary surge on estrus (254) or continuously elevated
prolactin levels on proestrus, estrus, and metestrus (34).
Because these latter results may have been caused by the
method and frequency of blood collection, it is generally
accepted that the afternoon of proestrus is the only time
that a major surge of prolactin secretion occurs.

Because the events of the rodent estrous cycle and
those of the primate menstrual cycle share some common
controls, it would not be illogical to expect a midcycle
surge of prolactin during the menstrual cycle that coin-
cides with that of luteinizing hormone. However, only one
study finds a small, late follicular phase rise of prolactin
secretion culminating in a midcycle peak that is only 50%
greater than prolactin levels of the early follicular phase
(1812). Such small changes can easily be overshadowed
by pulsatile changes, thus leading to a failure to detect
significant variations at midcycle in individual samples.

It is clear that the rising blood levels of estradiol
signal the hypothalamo-pituitary axis to release this surge
of prolactin on proestrus. Administration of an antiserum
to estradiol on the morning of diestrus-2 blocks the
proestrous surge of prolactin (1302). A single injection of
estradiol given to ovariectomized rats results in daily
surges of prolactin that are similar in timing to the
proestrous surge of prolactin (1297). These data suggest
the existence of a circadian hypothalamic timing mecha-
nism that is enhanced by estradiol. This mechanism by
which estradiol induces a proestrous surge of prolactin
secretion probably involves actions at the preoptic area of
the hypothalamus, since caudal transection of preoptic
efferents (939) or lesion of the preoptic area (1369) block
the estradiol-stimulated surge of prolactin secretion,
while implantation of estradiol in the preoptic area stim-
ulates a surge (1370). Indeed, ample evidence suggests
that both forms (« and ) of the estrogen receptor are
expressed by the neurons of the preoptic area (161, 195,
358, 995, 1039, 1388, 1869, 1925).

Progesterone administered on diestrus-3 of a 5-day
cycle will advance the proestrous surge of prolactin by 1
day (1305). Moreover, progesterone enhances the magni-
tude of an estrogen-induced proestrus-like surge of pro-
lactin in ovariectomized rats (259, 1911). However, the
precise role of progesterone in the secretion of prolactin
on proestrus has yet to be described.

Hypothalamic control of the preovulatory proestrous
surge of prolactin is far from clear. Although it is clear
that dopamine inhibits prolactin secretion and that re-
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moval of the tonic dopaminergic inhibition results in en-
hanced prolactin secretion, the role of dopamine as a
regulator of the proestrous surge of prolactin is contra-
dictory. Hypothalamo-hypophysial portal blood concen-
trations of dopamine (140), the activity of tyrosine hy-
droxylase (287), the turnover of dopamine in the median
eminence (411), and the subsequent concentration of do-
pamine in the anterior lobe of the pituitary gland (420)
have been reported to decline on proestrus before the
increase in prolactin secretion. On the other hand, others
have reported no change in dopamine turnover at the
same time (786, 1448). Similarly, dopamine receptors in
the anterior pituitary have been reported to both increase
(1384) and decrease (748) during the afternoon of
proestrus. The source of dopamine controlling prolactin
secretion is believed to be TIDA neurons with cell bodies
in the arcuate nucleus of the hypothalamus and axons
terminating in the median eminence. However, there is
ample evidence that some of the dopamine arrives at the
anterior lobe of the pituitary gland from the posterior lobe
that contains axon terminals of tuberohypophysial dopa-
minergic (THDA) neurons whose cell bodies are found in
the rostral part of the arcuate nucleus (63). In addition,
dopamine may arrive from the intermediate lobe that
contains axon terminals of periventricular-hypophysial
dopaminergic (PHDA) neurons that reside in the hypotha-
lamic periventricular nucleus (655, 656). The short portal
vessels connecting the lobes of the pituitary gland may
serve as the vascular pathway through which dopamine is
transported to the anterior lobe from the neural and in-
termediate lobes of the pituitary gland. Indeed, the fact
that posterior lobectomy results in a chronic elevation of
prolactin secretion (1255) suggests a functional role for
THDA neurons. However, data are unavailable to suggest
a similar role for PHDA neurons.

Further muddying these waters is the fact that a
prolactin-releasing hormone of hypothalamic origin must
play a role in the surge of prolactin secretion on
proestrus. Numerous candidates abound. TRH is one of
the earliest proposed candidates. Passive immunoneutral-
ization of endogenous TRH has been reported to partially
inhibit (963) or delay the onset (788) of the proestrous
surge of prolactin. Indeed, the concentration of TRH in
portal blood is slightly elevated during the afternoon of
proestrus (553). However, there is no distinct concomi-
tant elevation in TSH secretion during the afternoon of
proestrus (178) which, intuitively, should be expected to
accompany the increase in prolactin secretion on
proestrus. Similar to TRH, the concentration of oxytocin
increases in portal blood during the afternoon of
proestrus (1551). Hourly injections of an oxytocin antag-
onist block the proestrous surge of prolactin (867), and
administration of an antiserum to oxytocin attenuates the
estrogen-induced proestrus-like surge of prolactin (1537).
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3. Mating and pregnancy

As noted earlier, prolactin is a luteotrophic hormone
in the rat. Indeed, the unmated rat has an extremely short
luteal phase due to the lack of sufficient prolactin to
maintain the corpus luteum. However, if mating occurs or
a copulomimetic stimulus is applied to the uterine cervix,
the corpus luteum is rescued. It was assumed that the
mating stimulus eventuated in elevated prolactin secre-
tion. With the availability of the first radioimmunoassay
for prolactin (1304), it was shown that mating did not
induce constantly elevated prolactin secretion but rather
twice daily surges of prolactin. If the rats are kept under
12:12-h dark-light cycles, with lights on at 0600 h, the
diurnal surge of prolactin secretion begins in the after-
noon (1300-1500 h), reaches peak values during the early
evening (1700-1800 h), and returns to basal levels by
2400 h. The other surge, called nocturnal, begins by
0100 h, peaks by 0300—-0700 h, and approaches baseline
by 1100 h. These surges recur for 10 days if the mating is
fertile and results in pregnancy (255, 1648), or persist for
12 days in pseudopregnancy when mating is sterile or
copulomimetic (584, 1647). There are abundant data
which show that the surges of prolactin cease after day
10 of pregnancy due to the negative-feedback action of
placental lactogen acting at both pituitary and hypotha-
lamic levels (64, 649, 1755, 1756, 17601763, 1832—-1834,
1838), the details of which are described in section viC3.

Prolactin secretion stimulated by copulomimetic
stimuli can be initiated and maintained independent of
ovarian steroids (585). In contrast, the surges of prolactin
secretion of pseudopregnancy end after day 13 due to the
diminishing secretion of progesterone from the waning
corpora lutea coupled with the rising titers of estradiol
from the newly developing ovarian follicles (645). More-
over, the nonpregnant uterus itself secretes an, as yet,
uncharacterized factor, which inhibits prolactin secretion
by acting directly on the lactotroph (647, 648, 650).

The areas of the hypothalamus upon which the mat-
ing stimulus acts to initiate this unique pattern of prolac-
tin secretion have also been characterized (581, 705-707,
710, 920). The primary transduction pathway involves the
pelvic nerve (275, 1509, 1874). Presumably, the mating
stimulus is carried over spinal afferent pathways and
enters the brain. Although the exact pathways in the
entire brain have not been mapped, pharmacological and
physiological studies have implicated various areas of the
hypothalamus. On the basis of classical lesion and stim-
ulation studies, it appears that the preoptic area of the
hypothalamus contains two functional neuronal popula-
tions controlling prolactin secretion (5681). In the unmated
rat, one population is tonically active and inhibits the
nocturnal surge of prolactin, whereas the other is inactive
(681, 706). It appears that the uterine cervical stimulation
of mating inactivates the former and activates the latter,
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which eventuates in nocturnal and diurnal surges of pro-
lactin secretion. Induction of the surges either by cervical
stimulation or manipulation of the preoptic area requires
an intact dorsomedial/ventromedial hypothalamic nu-
cleus (707, 710).

The suprachiasmatic nuclei of the hypothalamus are
responsible for the faithful timing of the mating-induced
surges of prolactin (168), which are under the control of
an endogenous circadian rhythm (167). After cervical
stimulation, two daily decreases in the activity of neu-
roendocrine dopaminergic neurons of the hypothalamus
occur (1029). It has been suggested that the hypothalamus
produces a sex-specific stimulatory rhythm regulating
prolactin secretion which is unmasked by the dopamine-
lowering actions of the mating stimulus at the uterine
cervix (71). It has been proposed that prolactin-releasing
quanta of oxytocin are released twice each day into portal
blood feeding the sinusoid capillaries of the anterior pi-
tuitary gland (73, 76). The timing of these events, the
decrease in dopaminergic tone followed by an increase in
the concentration of oxytocin in portal blood, corre-
sponds to the release of prolactin in cervically stimulated
animals (76). The key neurotransmitters regulating each
of these oxytocin-dependent events are different. The
early morning (nocturnal) oxytocin-mediated prolactin
release is regulated by VIP, whereas the diurnal event
seems to be dependent on serotonergic activation (73, 74,
7.

It has been argued that a luteotrophic mechanism,
activated by a mating stimulus, is one of the more efficient
systems governing reproduction (580). In rodents, it is
advantageous for quick turnover of generations to
shorten the luteal phase during estrous cycles when an
ovulation is not associated with a fertile mating and con-
ception, whereas an active luteal phase, preparing the
uterus for implantation of an embryo, is only associated
with a mating stimulus.

C. Prolactin Release in Response
to Exteroceptive Stimuli

1. Light

A) CIRCADIAN PATTERNS. In photoperiodic mammals such
as rats, light is an important regulator of prolactin secre-
tion. Indeed, shifting of the light phase results in a coin-
cidental shift of the proestrous surge (179), the estrogen-
induced proestrus-like surge, and the mating-induced
surges of prolactin in rats (1418). When placed in constant
light, rats become acyclic (772). Complete removal of a
photoperiod by placing the animals in constant light or
through various means of light deprivation result in free-
running proestrus-like surges of prolactin secretion in
estrogen-treated ovariectomized rats (1418) and free-run-
ning mating-induced surges of prolactin secretion (167,
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1418). These effects require an intact suprachiasmatic
nucleus (168). These data point to the fact that these
events are under the control of an endogenous circadian
rhythm and that lighting periodicity entrains that rhythm.

B) SEASONAL PATTERNS. Prolactin secretion is also af-
fected by variations of day length in seasonal mammals.
In adult male hamsters, 2 mo of exposure to a short
photoperiod (5 h of light, 19 h of darkness) causes testic-
ular regression and a precipitous decline in release of
prolactin (98, 170). Although testicular regression is
blocked by transections dorsal or ventral to the hypotha-
lamic paraventricular nucleus (845), the fall in prolactin
secretion associated with short days is not (99). This may
not be unexpected given that the effects of short photo-
period on testicular regression and blunting of prolactin
secretion may be dissociated under certain regimens
(455), thus suggesting two different levels of control for
these two photoperiodic events. Indeed, the effect of
shortened photoperiod on prolactin secretion can be re-
versed by infusion of VIP into the paraventricular nucleus
of the hypothalamus (97).

In the ewe, another seasonal mammal, shortened
days lead to a diminution of prolactin secretion (927). In
rams, the effect presents itself within a week of exposure
to the shortened photoperiod (1052). The effect of photo-
period is mediated by melatonin secreted from the pineal
gland (385, 1431, 1432), transduced through the suprachi-
asmatic nucleus (1582), or acting directly on the pituitary
gland (1050). Short days also diminish the activity of
tyrosine hydroxylase and the content of dopamine in the
median eminence (1738, 1816). However, this reduction in
dopaminergic activity does not appear to have a direct
effect on prolactin secretion (1817). In addition, dopa-
mine does not mediate the suppressing effects of melato-
nin on prolactin secretion (1051, 1053, 1817).

It has been shown that photoperiodic information
regulating postnatal prolactin secretion is transferred
from mother to fetus in both sheep (488) and hamsters
(1600). Pregnant ewes exposed to short days give birth to
lambs that have lower serum prolactin concentrations
than those of dams exposed to long days. Prenatal expo-
sure of pregnant hamsters to short days results in male
offspring producing higher prolactin concentrations than
those from dams exposed to long days. Female hamster
neonates are unaffected by altered prenatal photoperiod.
These prolactin-secretory responses presumably involve
maternal melatonin as affected by the photoperiod (1908,
1909). In fetal sheep, prolactin secretion is also affected
by maternal photoperiod or melatonin (124, 1383). How-
ever, with increasing gestational age, the fetal hypothala-
mus appears to mask or suppress these effects (801). The
basis for the return of fetal independence from maternal
influence is not yet fully appreciated. It is possible that the
varying paradigms of photoperiod exposure may have
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engendered these seemingly paradoxical sequences of
events.

2. Audition

Of the many environmental inputs controlling prolac-
tin secretion, the effect of specific sounds is one of the
most responsive and robust but the least studied (682,
1733, 1831). Recordings of ultrasounds of hungry pups
stimulate prolactin secretion in lactating and virgin fe-
male rats (1733). This response is specific to ultrasounds
generated by pups as adult ultrasound or background
tape noise does not affect prolactin secretion. Although
the basis for this response has not been studied, one can
easily imagine its utility. Indeed, ultrasound-induced ma-
ternal prolactin secretion may be responsible for prepar-
ing the mammary gland for a subsequent suckling bout or
the released prolactin is transported to the milk to act as
a stimulator of the pups’ development.

3. Olfaction

Of the chemical senses, olfactory stimuli play a ro-
bust role in prolactin secretion. Pheromones secreted by
a male unfamiliar to the pregnant female will result in
early loss of pregnancy in mice. This phenomenon is
referred to as the Bruce effect, in recognition of its dis-
coverer (229-231). The pheromonal signal is conveyed to
the accessory olfactory bulb by the vomeronasal nerves,
which synapse on the primary dendrites of mitral cells in
glomeruli. The mitral cells, in turn, excite cells of the
corticomedial amygdala (1038), which excite cells in the
medial preoptic area of the hypothalamus and result in
excitation of TIDA neurons of the arcuate nucleus (1037).
The implication is that the loss of pregnancy occurs due
to the dopamine-induced suppression of prolactin secre-
tion (1503) and consequently its luteotrophic support.
Indeed, replacement of prolactin reverses the abortive
effect of the unfamiliar male’s pheromones (453, 454).

In lactating female rats, the odor of the pups placed
beneath the mother’s cage stimulates prolactin secretion
(1183, 1184) but, interestingly, inhibits milk secretion in
late lactation (682). On the other hand, when placed next
to the mother, pup odors are stimulatory to both prolactin
secretion and milk secretion (682). Thus the prolactin
secretory mechanism is more sensitive than the galacto-
poetic mechanism to pup odor in late lactating rats.

4. Stress

It is clear that prolactin secretion is dramatically
affected by “stress.” A myriad of stresses have been used
to characterize such effects on prolactin secretion. These
include, but are not limited to, the following: ether stress
(116, 667, 866, 876, 893, 1077, 1105, 1200, 1257, 1296,
1913), restraint stress (416, 590, 598, 883, 923, 944, 1446),
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thermal stress (1782a), hemorrhage (274, 883), social con-
flict (817), and even academic stress in humans (1108).

Because, in most cases, the prolactin-secretory re-
sponse (i.e., stimulation or inhibition) differs depending
on the nature of stress, one cannot describe a unitary
mechanism but must define the mechanism associated
with each specific stress modality.

The prolactin-secretory response to ether stress has
been reported to differ during the reproductive state of
the rat. During diestrus of the estrous cycle, ether stress
increases prolactin secretion (1296). However, there is no
universal agreement as to the nature of the responses at
proestrus. For example, ether stress has been reported to
increase (855), decrease (1231), or have no effect on
(1296) prolactin levels during the afternoon of proestrus.

Restraint stress applied before the surge of prolactin
secretion on the afternoon of proestrus enhances the
surge while application during the surge attenuates it
(1649). Similarly, restraint stress suppresses the
proestrus-like estrogen-induced afternoon surge of pro-
lactin in ovariectomized rats (598). It has also been re-
ported that restraint stress suppresses the nocturnal
surge of prolactin during pseudopregnancy (1221) or
pregnancy (1223). Because dopamine is the hypothalamic
neurohormone tonically inhibiting prolactin secretion, it
is intuitively obvious that dopamine would also be impli-
cated in the stress-mediated effects on prolactin secre-
tion. Indeed, pimozide, a dopamine antagonist, prevents
restraint stress-induced decrease in the estrogen-induced
afternoon proestrus-like surge of prolactin (598). More-
over, a modest increase in TIDA neuronal activity accom-
panies restraint stress in estrogen-treated (1224) but not
in cycling or lactating (923) rats. Other hypothalamic
substances implicated in the prolactin-secretory stress
response include serotonin (865, 876), histamine (953,
956), N-methyl-p,L-aspartic acid (214), atrial natriuretic
peptide (571), B-endorphin and dynorphin (1407), oxyto-
cin (956), and vasopressin (953).

The physiological importance to the organism of the
prolactin-secretory response to stress is rather elusive. It
is clear that neither the stress-induced attenuation of the
proestrous prolactin surge affects the estrous cycle of the
rat (1222) nor reduction of the mating-activated nocturnal
surge has any effect on the outcome of a pregnancy or
pseudopregnancy in the rat (1223). Given the finding of a
role for prolactin in humoral or cell-mediated immunity, it
can be argued that the prolactin-secretory response to
stress has an immunomodulatory function protecting the
organism from the consequences of stress (597). Although
there are no experimental data to support this hypothesis,
it has been suggested that prolactin secretion, particularly
during lactation, acts as a protective factor in stress-
induced gastric ulcers (464). Teleology would advise that
other roles, probably in maintaining homeostatic balance
affected by other stress hormones, exist as well.
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VII. REGULATION OF PITUITARY
PROLACTIN SECRETION

Prolactin secretion is affected by a large variety of
stimuli provided by the environment and the internal
milieu (Fig. 3). The most important physiological stimuli
that elevate pituitary prolactin secretion are suckling
(1298, 1732), stress (1296, 1298), and increased levels of
ovarian steroids, primarily estrogen (1298, 1301). Such
stimuli are transduced by the hypothalamus which elab-
orates a host of PRF and prolactin-inhibiting factors (PIF)
(Fig. 3). In mammals, the control exerted by the hypothal-
amus over pituitary prolactin secretion is largely inhibi-
tory (140). On the other hand, the hypothalamus is also
involved in the acute stimulatory control of prolactin
secretion by removal of the inhibition (disinhibition)
and/or superimposition of brief stimulatory input. In ad-
dition, prolactin secretion is also influenced by numerous
factors released by the lactotrophs themselves (autocrine
regulation) or by other cells within the pituitary gland
(paracrine regulation) (Fig. 3).

A. CNS

The general and well-accepted view is that lac-
totrophs have spontaneously high secretory activity.
Therefore, pituitary prolactin secretion is under a tonic
and predominant inhibitory control exerted by the hypo-
thalamus. This view is based on the following observa-
tions: 1) surgical disconnection of the pituitary gland and
the medial basal hypothalamus (median eminence lesion
or pituitary stalk section) results in gradual increase in
plasma prolactin that reaches a plateau within a week
after these surgeries (79, 174, 899, 1004), 2) prolactin
secretion occurs at a high spontaneous rate when the
anterior lobe is transplanted to a site that has no vascular
or neural connection to the hypothalamus (e.g., under the
kidney capsule) (523, 524), or 3) when pituitary cells are
cultured in vitro (1298, 1299, 1590). Thus it appears that
prolactin secretion is severely restrained in vivo by the
action of hypothalamic PIF.

The precise characteristics of the regulation of pro-
lactin secretion are fundamentally determined by the
physiological status of the animal. Therefore, for the pur-
pose of this review, we will make reference to the animal
model used in the studies involved. To narrow the scope
of this review, specific attention will be given to animal
models with obvious physiological significance, such as
the estrous cycle of female rats (proestrous prolactin-
secretory surge), pregnant/pseudopregnant female rats
(daily nocturnal and diurnal prolactin surges), lactating
female rats (suckling-induced prolactin secretion), and
male rats (stress-related prolactin secretion). Different
experimental models emphasizing particular stages of the
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common pathways of the central stimu-
latory and inhibitory control of prolactin
secretion are the neuroendocrine neu-
rons producing prolactin inhibiting fac-
tors (PIF), such as dopamine (DA), so-
matostatin (SST), and vy-aminobutyric
acid (GABA), or prolactin releasing fac-
tors (PRF), such as thyrotropin releasing
hormone (TRH), oxytocin (OT), and neu-
rotensin (NT). PIF and PRF from the neu-
roendocrine neurons can be released ei-
ther at the median eminence into the long
portal veins or at the neurointermediate
lobe, which is connected to the anterior
lobe of the pituitary gland by the short
portal vessels. Thus lactotrophs are reg-
ulated by blood-borne agents of central
nervous system or pituitary origin (a-me-
lanocyte stimulating hormone) delivered
to the anterior lobe by the long or short
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estrous cycle (e.g., ovariectomized females with various
ovarian steroid replacement) are also considered.

1. Biogenic amines

A) DOPAMINE. 1) Dopamine is the major PIF. Observa-
tions that drugs affecting catecholamine metabolism also
alter prolactin secretion (79, 361) and the fact that dopa-
mine is present in high concentration in both the median
eminence (593) and the hypophysial stalk blood (140, 142,
621, 1422) led several investigators to conclude that do-
pamine is the major physiological hypothalamic PIF. Am-
ple experimental evidence shows that dopamine inhibits
prolactin release from pituitary lactotrophs both in vivo
and in vitro (1096-1098). Subsequently, dopamine re-
ceptors have been detected on pituitary membranes
(226, 369, 373, 639). Dopamine receptors located on
lactotroph membranes belong to the D, subclass of the

Peripheral blood

dopamine receptor family (279, 280, 1171). Recent evi-
dence emphasizes the physiological importance of hy-
pothalamic dopamine in regulating lactotroph function.
Mice with a disrupted D, receptor gene have anterior
lobe lactotroph hyperplasia and hyperprolactinemia
(925, 1526). The hyperplasia ultimately leads to lac-
totroph adenoma in both male and female D, knockout
mice (92).

1I) Anatomy of the neuroendocrine dopaminergic
neurons. Using the Falk and Hillarp amine-fluorescence
method (533), Dahlstrom and Fuxe (379) mapped the
catecholaminergic neuron populations and -classified
them as Al to A15 according to their rostrocaudal distri-
bution in the CNS (379). The dopaminergic neurons of the
periventricular and arcuate nuclei of the medial-basal
hypothalamus (termed A14 and A12, respectively) provide
dopamine to the pituitary gland (655, 656, 783, 922).

The Al4 and Al2 dopaminergic neuron populations
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FIG. 4. Neuroendocrine dopaminergic neuron populations in the rat hypothalamus. Perikarya of the periventricular
hypothalamic dopaminergic (PHDA) neurons (A14 cell group) are located in the periventricular nucleus, and their axons
terminate in the intermediate lobe of the pituitary gland (IL). The arcuate nucleus (A12 cell group) contains the perikarya
of two distinct neuroendocrine dopaminergic neuron populations. The tuberohypophysial dopaminergic (THDA) neu-
rons project from the rostral arcuate nucleus both to the neural (NL) and intermediate (IL) lobes of the pituitary gland.
From the dorsomedial part of the arcuate nucleus the tuberoinfundibular (TIDA) neurons project to the external zone
(EZ) of the median eminence (ME). TIDA terminals release dopamine into the perivascular spaces of the fenestrated
capillary loops of the EZ, giving rise to the long portal veins (LP). The long portal veins empty into the sinusoids of the
anterior lobe (AL) of pituitary gland. Small short portal (SP) veins connect the fenestrated capillaries of the neural and
intermediate lobes with the anterior lobe sinusoids. Thus dopamine of TIDA, THDA, and PHDA origin can reach lactotrophs,
located in the anterior lobe of the pituitary gland. IILv, 3rd ventricle; OC, optic chiasma; MB, mammillary body; 1Z, internal
zone of the median eminence; PS, pituitary stalk. [From Lerant et al. (1029). Copyright The Endocrine Society.]

can be divided into three anatomically and functionally
different systems based on the rostrocaudal distribution
of the dopaminergic perikarya and their terminal fields in
the distinct lobes of the pituitary gland (Fig. 4). TIDA
neurons are located mostly in the dorsomedial part of the
arcuate nucleus (A12) and project to the external zone of
the median eminence (922) where dopamine is released
into the perivascular space surrounding the capillary
loops of the pituitary portal system. The intermediate and
neural lobes of the pituitary gland are innervated by two
virtually independent groups of hypothalamic dopaminer-
gic neurons (130, 656). The periventricular hypophysial
dopaminergic (PHDA) neurons (Al4) are located in the
hypothalamic periventricular nucleus and terminate in
the intermediate lobe (655). On the other hand, THDA
neurons are found in the rostral arcuate nucleus (A12)
between the previous two cell groups and project to both
the intermediate and the neural lobe of the pituitary gland
(783, 784). The microanatomy and biochemistry, as well
as the distinct physiological functions of the TIDA and
THDA neurons, were first described by Holzbauer and
Racke (783). Subsequent studies provided more detailed
morphological and functional characterization of the
three neuroendocrine dopaminergic systems of the hypo-
thalamus (419, 657, 759, 922, 1076, 1279, 1281, 1373, 1414).

IIT) TIDA neurons and their requlatory properties.
Dopamine of TIDA origin, delivered though long portal
vessels into the sinusoid capillaries of the anterior lobe, is
considered the major physiological regulator of prolactin
secretion (1024).

TIDA neurons have unique regulatory properties

compared with other dopaminergic neurons of the CNS,
like the nigrostriatal (NSDA) and mesolimbic (MLDA)
dopaminergic neurons (1368). Moreover, there are signif-
icant differences between the regulatory properties of
TIDA neurons in males and females (1368). In females,
basal TIDA activity (412, 414) and responsiveness to pro-
lactin are higher than in males (414). This may be ex-
plained by tonic inhibition of the activity of TIDA neurons
in male rats by endogenous opioids, which is not present
in female rats (1123). TIDA neuronal activity is decreased
by ovariectomy and increased by orchidectomy (708).
These effects were reversed by appropriate steroid treat-
ment (709). There are sexual differences in the response
to stress, which decreases TIDA activity in females, but
not in male rats (415). Because all of the above experi-
ments were performed in vivo, it cannot be firmly con-
cluded that the sexual specificity was directly at the do-
paminergic neuron.

Due to the preponderant influence of dopamine on
prolactin secretion at the pituitary level and the well-
established feedback action of prolactin on these neu-
rons, it is difficult to separate/isolate the central effects of
dopamine from its direct influence on prolactin secretion.
Therefore, until recently, the role of dopamine as neuro-
transmitter in regulation of prolactin secretion was poorly
documented. Nevertheless, dopamine can affect prolactin
secretion by acting centrally, in addition to its direct
action on the lactotroph (155, 156, 474, 475, 486, 487). In
male rats, specific D; antagonists elevate, whereas D,
agonists (88) decrease dihydroxyphenylacetic acid
(DOPAC) content in the median eminence (155, 475),
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indicating D, receptor-mediated inactivation of TIDA neu-
rons. Because D; receptors have been shown to be cou-
pled to G, or G, proteins (1401) that stimulate adenylate
cyclase activity, these data suggest D;-mediated decrease
in TIDA activity is mediated by activation of an inhibitory
neuron innervating TIDA neurons.

Other pharmacological experiments suggest that
TIDA neurons receive stimulatory input through D, recep-
tors (156, 474, 486). The latter influence is thought to be
mediated by inhibiting inhibitory (possibly dynorphiner-
gic) interneurons (1124). In earlier pharmacological ex-
periments, acute administration of less selective dopa-
mine agonists (e.g., apomorphine) or antagonists (e.g.,
haloperidol) failed to alter the activity of TIDA neurons
(413, 539). On the basis of recent observations made by
using pharmacological probes more selective at different
dopamine receptor subtypes, it has been concluded that a
simultaneous activation or inhibition of D; and D, recep-
tors cancels the actions mediated by these receptors on
TIDA neurons (475).

1V) THDA and PHDA neurons. The role of dopamine
released from PHDA and THDA axon terminals at the
neurointermediate lobe has attracted more attention dur-
ing the past few years. For example, it has been reported
that the activity of both PHDA and THDA neurons, unlike
the TIDA system, is independent of circulating gonadal
steroids (1279). Moreover, there are no marked differ-
ences between male and female rats in the activity of
THDA neurons (759). In addition, it has recently been
found that TIDA and THDA neurons, but not PHDA neu-
rons, regulate the control of the secretion of prolactin in
response to the suckling stimulus (1281). Surgical re-
moval of the neurointermediate lobe results in a three- to
fourfold increase in basal plasma prolactin levels in male,
as well as cycling and lactating female rats (143, 1406).
Consistent with this finding is the report that electro-
chemically detectable dopamine in the anterior pituitary
gland is reduced after surgical removal of the posterior
lobe (1248). Moreover, in lactating rats, basal- and suck-
ling-induced pituitary prolactin secretion is suppressed
after water deprivation (1279). Because the THDA system
is selectively activated by dehydration (30, 785, 1443,
1764), it is conceivable that dopamine, released by nerve
terminals in the neurointermediate lobe of the pituitary
gland, may travel to the anterior lobe through the short
portal vessels to affect prolactin secretion. Indeed, halo-
peridol (a D, dopamine receptor antagonist) pretreatment
can block dehydration-induced plasma prolactin deple-
tion (1279). Thus a reduction or an elevation of dopamine
level in blood carried by the short portal vessels may
provide a mean by which prolactin secretion of lac-
totrophs can be affected during lactation.

It is well known that dopamine, released from termi-
nals of PHDA neurons in the intermediate lobe (19, 19,
493, 1711), tonically inhibits the secretion of a-melano-

PROLACTIN

1545

cyte stimulating hormone («-MSH) from melanotrophs of
the intermediate lobe (201, 1054, 1747). Therefore, assum-
ing that PHDA neurons participate in the regulation of
prolactin secretion, one can expect parallel changes in
plasma levels of prolactin and o-MSH during an acute
stimulus like suckling (1811). However, it has been clearly
shown that there is no change in plasma o-MSH in re-
sponse to nursing (933). Therefore, an acute diminution in
the activity of PHDA-regulated a-MSH secretion does not
occur during the suckling stimulus. However, the obser-
vations that the dopamine concentration in the neuroin-
termediate lobe is lower and the basal level of plasma
a-MSH is higher in lactating than in cycling female rats
(1811) indicate some supporting role for PHDA neurons in
the regulation of prolactin secretion during lactation.

V) Is dopamine the sole PIF? The question whether
dopamine is the sole PIF mediating tonic hypothalamic
inhibition is still unsettled. In early studies of this issue,
investigators reported that the amount of dopamine in
stalk blood is sufficient to account for only about two-
thirds of the prolactin inhibition normally observed (403,
1299). This conclusion was based on quantitative studies
in which dopamine was replaced in rats depleted of en-
dogenous dopamine with the tyrosine hydroxylase (TH,
the rate-limiting enzyme of dopamine synthesis) inhibitor
a-methyl-para-tyrosine (a-MpT), and the rate of dopa-
mine infusion was set to mimic the levels measured in
stalk blood of intact animals (621, 1024). Although the
inhibitory influence of dopamine on pituitary prolactin
secretion is established beyond a reasonable doubt, an
inverse relationship between hypothalamic secretion of
dopamine and pituitary secretion of prolactin does not
always exist. For instance, the dopamine level in hypo-
physial stalk plasma is five to seven times lower in males
than in females (140, 142, 696), but plasma levels of
prolactin are not much different. Moreover, a mirror-
image relationship between dopamine concentrations of
the median eminence or the portal blood and plasma
prolactin has also not been demonstrated in lactation
(404, 1421, 1423). The apparent inconsistency between
dopaminergic activity and prolactin secretion could easily
be resolved by assuming that additional PIF (e.g., GABA
and somatostatin) may also contribute to the negative
control of prolactin secretion. These alternative PIF can-
didates (listed in Table 2) are discussed later in this
section.

VI) Prolactin secretion due to dopamine with-
drawal. The most plausible mechanism for an increase in
prolactin release is disinhibition, i.e., that a given stimulus
reduces the tonic inhibitory effect of the hypothalamus
thus freeing the pituitary gland to express its inherent
capacity to secrete prolactin spontaneously at a very high
rate (1024, 1299, 1301). Indeed, treatment of rats with
sufficient amounts of o-MpT to completely suppress do-
pamine secretion into hypophysial stalk blood results in
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an increase in prolactin secretion (621, 694) quantitatively
similar to those observed after suckling or stress. Similar
results can be obtained in vitro when removal of dopa-
mine infusion results in a rapid increase of prolactin
release (530). Thus disinhibition is a potential mechanism
by which neurogenic stimuli induce release of prolactin.
However, conflicting results have been reported about the
change in dopaminergic neuronal activity in response to
the suckling stimulus. Dopaminergic neuronal activity has
been described to increase (595), remain unchanged
(1240, 1835), or slightly decrease (322, 1181, 1219, 1585)
during a single bout of suckling. Most direct studies have
been those in which the mammary nerve was stimulated
electrically to simulate suckling and dopamine release
was detected in hypophysial stalk blood (404, 1423) or in
the median eminence with an electrochemical probe
(1421). Using this experimental paradigm, only a brief
(3-5 min) 60-70% decline in dopamine release was ob-
served (404, 1421, 1423). This decline was followed by a
series of rapid pulses of dopamine above the baseline
which lasted for the duration of mammary nerve stimula-
tion (1423). These results have led to the conclusion that
a decrease in dopamine outflow from the hypothalamus
itself is insufficient to account for the suckling-induced
prolactin release. However, recent experiments have
clearly demonstrated that dopamine content of the inner
zone of the anterior lobe obtained from lactating rats is
reduced after a 10-min suckling stimulus (1281). This
finding seems to explain the previous controversial re-
sults, since the inner zone of the anterior lobe has been
shown to be the most responsive to the inhibitory action
of dopamine (188, 1280). Moreover, increased responsive-
ness to prolactin secretagogues (like TRH, ANG II, or
forskolin) have been observed in lactotrophs of the inner
zone, but not the outer zone of the anterior lobe of the
pituitary gland after a 10 min suckling stimulus (1280).
VII) Dopamine as a stimulator of prolactin secre-
tion. Several observations on pituitary cells in vitro indi-
cate that dopamine is also capable of stimulating prolac-
tin secretion, especially at low (pM) concentration (252,
427, 979, 1614). It appears that the in vivo status of the
donor animals determines the lactotrophs’ responsive-
ness to dopamine in vitro. For example, lactotrophs ob-
tained from suckled lactating rats (761), or estradiol- and
progesterone-treated ovariectomized female rats (346),
have a propensity to respond by stimulation when chal-
lenged with dopamine in vitro. More than a decade ago,
Denef et al. (427) then Shin (1614) first reported that a
very low concentration of dopamine (1,000-fold lower
than those required for maximal inhibition) could actually
stimulate prolactin secretion from male rat pituitary cells
in vitro. Kramer and Hopkins (979) and more recently
Burris and co-workers (251, 252) have extended these
studies using both static and dynamic cultures of pituitary
cells from cycling female rats. This latter group has found
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that a rapid reduction in dopamine concentration from
107" M (a dose that maximally inhibits prolactin secre-
tion) to 107° or 107'* M caused a greater stimulation of
prolactin release than that evoked by complete removal of
dopamine (251). Arey et al. (72) and Nagy and co-workers
(1280, 1282) have published the first reports, which have
clearly suggested a possible physiological relevance of
these in vitro data. Arey et al. (72) have demonstrated that
infusion of 10 ng-kg "min~* dopamine to freely moving
rats results in a further increase in the already elevated
plasma prolactin when synthesis of endogenous dopa-
mine is blocked by the TH inhibitor a-MpT. The other
group has used anterior pituitary cells obtained from
nonsuckled (separated from their litters for 4 h) or suck-
led (for 10 min) lactating rats that were exposed to vari-
ous concentrations of dopamine in vitro. Prolactin release
was measured by reverse hemolytic plaque assay. Surpris-
ingly, pituitary cells from nonsuckled rats exhibited only
the prolactin-inhibitory response to dopamine but never
actually stimulated prolactin above basal values as has
been found for pituitary cells derived from males or cy-
cling females (761, 1282). In striking contrast, a brief
suckling stimulus applied immediately before death ren-
dered the prolactin cells responsive to stimulation by
10~ '2 M concentration of dopamine (761).

The case for dopamine enhancement of prolactin
secretion both in vitro and in vivo raises the question of
the physiological relevance of this phenomenon. Have
lactotrophs in situ ever been exposed to dopamine levels
low enough to be stimulatory? The suckling stimulus
results in a brief and transient reduction in the level of
dopamine in long hypophysial portal vessels (404, 1423,
1499). Dopamine concentration in the portal circulation
of cycling rats is the lowest during the day of proestrus
(140). However, it is doubtful that a 50-70% decrease in
portal blood dopamine (140, 404) is sufficient to achieve
concentrations capable of stimulating prolactin release.
On the other hand, dopamine concentration in stalk blood
(140, 142, 621) is in the low nanomolar range (10~% M),
which is either ineffective or has only a weak inhibitory
effect in vitro (1097), but 100- to 1,000-fold lower doses
are required to stimulate prolactin release. One possible
explanation is that the diminution in dopamine arriving at
the anterior pituitary through the long portal vessels may
not accurately reflect the total amount of dopamine the
gland “sees.” Indeed, a significant portion of the dopamine
arriving at the anterior lobe originates from axon termi-
nals in the neurointermediate lobe (1248) and is delivered
through short portal vessels (420, 422).

It has been argued that dynamic release of prolactin
is partially the consequence of complete withdrawal of
dopamine (1133, 1135, 1138). Indeed, many of the trans-
duction events mediating dopaminergic inhibition of pro-
lactin secretion are completely reversed when dopamine
is acutely withdrawn (674, 675, 767). Though there is no
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doubt that these data support this contention, it is difficult
to conceive that the dopaminergic neuron becomes com-
pletely quiescent to facilitate prolactin secretion. Indeed,
it has been shown that a diminution of dopamine stimu-
lates a far greater amount of prolactin secreted than that
in response to complete withdrawal (252).

Another possible explanation for these apparent con-
troversies is the assumption that dopamine may require
supplementary agent(s) to effectively inhibit prolactin re-
lease and thus properly function as the PIF (1617, 1620).
Shin et al. (1617) proposed ascorbic acid, routinely used
to protect dopamine from oxidation, as a major candidate
for the supplementary factor of dopamine. It is quite clear
that ascorbic acid is not a simple antioxidant and can
truly potentiate the inhibitory effect of dopamine in vitro
by 100 times. Therefore, ascorbic acid may serve as a
“responsiveness” agent for potentiating dopamine inhibi-
tion of prolactin release. Frawley and co-workers (761)
have provided evidence that a-MSH from the intermediate
lobe can also function as a responsiveness factor in vitro.
In contrast to ascorbic acid, a-MSH decreases the respon-
siveness of lactotrophs to the inhibitory effect of a high
dose of dopamine and enhances their responsiveness to
the stimulatory effect of a low dose (761). Ascorbic acid,
a-MSH, and possibly other substances as well, produced
either in the hypothalamus or in the pituitary gland, may
function as a lactotroph responsiveness factor (LRF).
These responsiveness factors can be defined as sub-
stances with little or no direct influence on prolactin
release themselves while they can exert profound effects
on prolactin secretion by altering lactotrophs’ responsive-
ness to the classical hypothalamic releasing and/or inhib-
iting factors.

VIII) Signal transduction pathways in lactotrophs
coupled to the dopamine receptor. A number of transduc-
tion mechanisms have been described that mediate dopa-
minergic control of prolactin secretion. Inhibition of pro-
lactin secretion by activation of D, receptors has been
linked to inhibition of adenylyl cyclase (508, 565) and
inositol phosphate metabolism (272, 510, 513, 1635).
Moreover, activation of the D, receptor modifies at least
five different ion channels. Dopamine activates a potas-
sium current that induces plasma membrane hyperpolar-
ization (847) and increases two voltage-activated potas-
sium currents while decreasing two voltage-activated
calcium currents (492, 1067-1069, 1070, 1110). It has been
shown that the nonhydrolyzable GTP analog guanosine
5'-O-(3-thiotriphosphate) (GTP+yS) potentiates dopami-
nergic inhibition of voltage-sensitive calcium channels
(1066). With the use of varying antibodies raised against
specific G proteins (1065) or antisense oligonucleotide
technology (100), it has been shown that the excitation of
voltage-sensitive potassium channels through D, dopa-
mine receptors is a function of G; 3o, whereas the inhibi-
tion of voltage-activated calcium channels is mediated by
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G,a proteins (1065). Thus inhibition of prolactin secre-
tion in response to dopamine is a function of coupling of
D, receptors to a G; 3o which inhibits adenylyl cyclase
activity and concomitantly excites voltage-sensitive po-
tassium channels while coupled to G, and inhibiting
voltage-sensitive calcium channels. Although the inhibi-
tion of cyclase activity may be unrelated to the inhibition
of exocytosis (1002), the net effect on prolactin secretion
appears to be mediated by inhibition of the calcium chan-
nels and excitation of potassium channels.

In contrast, stimulation of prolactin secretion by do-
pamine involves binding to a D, receptor (252) which is
functionally coupled to a G4 (251) and in turn activates
voltage-sensitive calcium channels (582) that subse-
quently increase intracellular calcium (248) to facilitate
exocytosis (327, 1740).

IX) Prolactin feedback on neuroendocrine dopami-
nergic neurons. It is well established that prolactin af-
fects its secretion by regulating its own hypothalamic
control through a short-loop feedback mechanism (1194).
Elevation of serum levels of prolactin increases hypotha-
lamic dopamine synthesis (412) and the concentration of
dopamine in hypothalamo-hypophysial portal blood (695).
The rate of dopamine synthesis is reduced by hypophy-
sectomy or lowering blood levels of prolactin with bro-
mocryptine (418). Recently, the presence of prolactin-R
has been described in all subpopulations (TIDA, THDA,
PHDA) of the neuroendocrine dopaminergic neurons (69,
1028), providing the anatomical basis for short prolactin
feedback. All of these subpopulations are activated by
prolactin (419). With the use of an interesting animal
model, the prolactin-deficient dwarf mouse, it has been
shown that TIDA neurons do not develop in sufficient
number in the absence of prolactin (1413, 1414). Prolactin
replacement during development (1498), but not when an
adult (1414), reverses this deficit.

X) The dopamine transporter as regqulator of prolac-
tin secretion. Termination of dopamine action is primar-
ily achieved by its reuptake by the dopamine transporter
located on the terminals of dopaminergic neurons. Mice
lacking the dopamine transporter gene are incapable of
nursing their young and are significantly growth retarded
(626). These animals have a marked reduction in the size
of the anterior and intermediate lobes but not the poste-
rior lobe of the pituitary gland (193). Accompanying the
anterior pituitary hypoplasia is a diminution of prolactin
and growth hormone message and an increased amount
of extracellular dopamine in the anterior lobe (193, 421).
It is not only the dopamine transporter of TIDA neurons
that is effective in regulating prolactin secretion, but the
transporter in THDA and PHDA neurons as well (421).
Activity of the transporter on TIDA, THDA, and PHDA
neurons is required to clear dopamine from the respective
perivascular spaces and thus allow prolactin secretion.

B) NOREPINEPHRINE AND EPINEPHRINE. Early pharmacolog-
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ical data indicated a tonic inhibitory influence of central
noradrenergic systems on basal or estradiol-induced pro-
lactin secretion (1012). The tonic inhibitory effect of nor-
epinephrine is likely mediated by «;-adrenergic receptors
(400). On the other hand, the proestrous surge of prolac-
tin secretion and stress-induced prolactin release is sup-
pressed by surgical or chemical (6-hydroxydopamine) im-
pairment of central noradrenergic pathways (1003).
Blockade of central norepinephrine biosynthesis does not
alter suckling-induced prolactin release in lactating rats
(286).

Data concerning the role of epinephrine in regulating
anterior pituitary hormone secretion are scarce. Although
the selective blockade of epinephrine biosynthesis in the
CNS blocks the estradiol/progesterone-induced LH surge,
the secretion of prolactin is not altered by an inhibitor of
phenylethanolamine-N-methyltransferase (PNMT) (1734).
On the basis of these observations, epinephrine does not
appear to have a major function in regulation of prolactin
secretion (1734). However, other pharmacological (911,
1012, 1818) and morphological data (775) suggest that
central adrenergic mechanisms are involved in the regu-
lation of prolactin secretion. More recently, by using light
and electron microscopic immunocytochemical tech-
niques, PNMT-immunoreactive axon terminals have been
detected terminating on the cell bodies and dendrites of
dopaminergic neurons in the arcuate nucleus (805), thus
providing a morphological basis for the modulation of
TIDA neuronal activity by epinephrine. Taken together, it
seems quite conceivable that adrenergic modulation, me-
diated by either norepinephrine or epinephrine, plays an
important role in stress-induced prolactin secretion; the
functional context of the immunocytochemical findings
(775, 805) is still undefined.

C) SEROTONIN. Although receptors for serotonin are
present in the anterior lobe of the pituitary gland (262,
263), serotonin does not stimulate prolactin release in
vitro (999, 1000), suggesting that it functions as a neuro-
transmitter rather than a neurohormone. It seems that the
dorsal raphe nucleus is the main source of the ascending
serotonergic pathways involved in the regulation of pro-
lactin secretion (Fig. 6) (651, 1788).

Intracerebroventricular or intravenous infusion of se-
rotonin (5-hydroxytrypamine) or its precursor 5-hy-
droxytryptophan results in an increase of plasma prolac-
tin levels in rats (999, 1085), as well as in humans (919).
Moreover, inhibition of serotonin synthesis, while not
affecting prolactin secretion in intact rats (972), reduces
prolactin release in estrogen-primed rats (260, 313) as
well as completely blocks suckling-induced release of
prolactin (972). After a block of serotonin synthesis, ad-
ministration of 5-hydroxytryptophan, the immediate pre-
cursor of serotonin, restores the prolactin response to
nursing (972). A low dose of the serotonin-receptor
blocker methysergide has also been shown to abolish the
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prolactin response to suckling (600). Suckling results in a
rapid (within 5 min) decrease in the hypothalamic con-
centration of serotonin and an elevation of its metabolite
5-hydroxyindoleacetic acid, simultaneously with the re-
lease of prolactin (1181). Although the studies with sero-
tonin receptor antagonists are not always conclusive
(986), it can be safely assumed that serotonin facilitates
suckling-induced prolactin release. 5-Hydroxytryptophan-
induced prolactin release requires an intact neurointer-
mediate lobe (1200) and is blunted by hypothalamic ab-
lation in rats (1341). An essential role of the hypothalamic
paraventricular nucleus (PVN) in the 5-hydroxytrypto-
phan- or serotonin agonist-induced increase of prolactin
secretion has also been demonstrated (104, 105, 107,
1200). These data suggest hypothalamic target(s) for the
ascending serotonergic pathways. However, the hypotha-
lamic dopaminergic neurons do not seem to be the major
site where serotonin exerts its prolactin-releasing activity
because serotonin elevates prolactin more or less inde-
pendently of the concentration of dopamine in the portal
circulation (1420). Dopamine infusion cannot prevent se-
rotonin-induced prolactin release, and 5-hydroxytrypto-
phan can further increase plasma prolactin in rats pre-
treated with either o-MpT, the inhibitor of the
biosynthesis of dopamine or reserpine, a dopamine-de-
pleting agent (1152).

Serotonin afferents terminating in the suprachias-
matic region are important in the regulation of prolactin
secretion, especially in generating the estrogen-induced
prolactin surge of ovariectomized rats (921). However,
pharmacological lesion of the serotonin neurons with
5,7-dihydroxytryptamine (5,7-DHT), either at the dorsal
raphe or suprachiasmatic regions, does not affect suck-
ling-induced or the high afternoon episodic prolactin
bursts in lactating rats (1284).

Within the last decade, several serotonin receptor
types have been identified in the CNS, but the specific role
of one or the other in the mediation of the prolactin
response to serotonin is still superficially understood.
S5HT, , bHT,,, and 5HT, serotonin receptor agonists in-
crease plasma prolactin in vivo (108, 1040). More recently,
the pivotal role of the paraventricular hypothalamic nu-
cleus in the mediation of serotonin-induced prolactin re-
lease has been confirmed (104, 105). It has been shown
that after a selective lesion of the PVN, prolactin release
induced by a 5HT, receptor agonist is completely pre-
vented, and the stimulatory effect of the 5HT,, agonist is
significantly reduced, whereas there is no change in pro-
lactin response induced by the 5HT,, receptor agonist
(106, 107). The latter observation suggests that other
structures may also have a role in the mediation of the
serotonin-induced prolactin response.

D) HisTAMINE. Early pharmacological experiments in-
dicated clearly that endogenous histamine has a stimula-
tory influence on prolactin secretion (1780). For instance,



October 2000

intracerebroventricular injection of histamine increases
prolactin secretion from male or ovariectomized estradi-
ol-primed rats (59, 456, 458, 460, 1044, 1484), whereas H1
histamine receptor antagonists block suckling- or stress-
induced prolactin release (59, 644, 1044). On the other
hand, H2 histamine antagonists rather than H1 block ex-
ogenous histamine-induced prolactin secretion (568, 457,
460, 1468). Although the precise pharmacological profile
of the receptor(s) mediating histamine effects on prolac-
tin secretion is not clear, it seems that histamine may
affect prolactin secretion predominantly through H2 re-
ceptor activation (58) and that the effects of H1 antago-
nists on prolactin secretion observed earlier are likely due
to a heretofore uncharacterized nonspecific effect of
these compounds (1780).

There is little doubt that the effect of histamine on
prolactin secretion is mediated through the CNS (960,
962, 1580). Indeed, a wide variety of histaminergic com-
pounds show little direct effect on the pituitary gland
(58, 1780, 1879). Because the histamine-induced rise in
prolactin secretion coincides with a decrease in dopa-
mine concentration in portal blood (622), it seems
likely that the neuroendocrine dopaminergic neurons in
the hypothalamus, especially the TIDA system, are the
primary targets for a central histaminergic influence.
On the other hand, histamine-stimulated prolactin se-
cretion may not be mediated by an inhibition of TIDA
systems after all, since intracerebroventricular injec-
tion of histamine, while producing a dose-dependent
increase of prolactin secretion, does not affect the
biochemical indexes of dopaminergic neuronal activity
(DOPAC concentration or .-DOPA accumulation) in the
median eminence (5657). Although the latter results cast
some doubt on the direct histaminergic influence on
TIDA neurons, it still seems likely that a histamine-
dopamine interaction at the hypothalamic level is part
of the neural mechanism by which histamine modulates
prolactin secretion (558). In addition, histamine,
through a presynaptic H3 histamine receptor (1571), is
capable of modulating the release of vasopressin (953,
955), norepinephrine (5654), serotonin (555, 875), endog-
enous opioids (958), and dopamine (1571), all of which
are involved in the regulation of prolactin secretion.

The role of the central histaminergic system in
regulating prolactin secretion was corroborated by the
finding that bilateral lesion of the posterior hypothala-
mus (1317), which destroys histaminergic neurons ex-
clusively localized in the mammillary nuclei (16, 838,
1376), inhibits stress-induced prolactin secretion in
male rats (961). In addition, inhibition of histamine
synthesis and release by activation of central presyn-
aptic H3 receptors (90, 603) diminishes stress-induced
prolactin secretion (961, 1656).
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2. Acetylcholine

In GH; cells, muscarinic acetylcholine receptor acti-
vation decreases prolactin secretion (1885). With the con-
sideration of the rapid deactivation of acetylcholine by
the omnipresent cholinesterases, it seems unlikely that
acetylcholine of hypothalamic origin subserves a neu-
roendocrine role as a regulator of prolactin secretion
(276).

Cholinergic stimulation by systemic or intracerebro-
ventricular administration of cholinergic agonists causes
a decrease in serum prolactin concentration (662, 665,
1043). Moreover, cholinergic agonists (nicotinic and, to a
lesser extent, muscarinic) prevent suckling- or estradiol-
induced prolactin secretion (58, 180, 1696). It is generally
assumed that the inhibitory effect of acetylcholine and its
agonist is mediated through the stimulation of TIDA neu-
rons (504, 665, 1696, 1885). This assumption is further
supported by the finding that acetylcholine agonists pre-
vent the morphine-induced increase of prolactin secretion
(1261), since morphine is known to affect prolactin secre-
tion by decreasing TIDA activity (472, 742, 1836). Acetyl-
choline administered intracerebroventricularly decreases
the concentration of dopamine in portal blood (622),
which is obviously inconsistent with the acetylcholine-
induced decrease of prolactin secretion (662, 665, 1043).
The latter observation indicates that in addition to the
hypothalamic neuroendocrine dopaminergic systems,
there are other targets of cholinergic modulation of pro-
lactin secretion.

3. Neuropeptides

A) TRH. TRH was originally isolated as a hypophys-
iotrophic factor that stimulates thyroid-stimulating hor-
mone (TSH) secretion from pituitary cells (1566). Subse-
quently, TRH has been shown to stimulate prolactin
release from lactotrophs in a dose-dependent manner
both in vitro and in vivo (178, 202, 1723).

TRH-like immunoreactivity is widely distributed in
the CNS (774, 1186). Most of the TRH-immunopositive
perikarya projecting to the median eminence are in the
parvicellular subdivision of the paraventricular nucleus of
the hypothalamus (227, 724, 774, 1015, 1186). TRH is
secreted into hypophysial stalk blood (520, 553), and its
receptor is present on pituitary cells (1129), specifically
on lactotrophs (763). These data would suggest that al-
most all of the requirements for considering TRH as a PRF
in a physiological context are satisfied.

TRH can efficiently stimulate pituitary prolactin se-
cretion in vivo in estrogen-primed male rats (1419) but not
in normal male or lactating female rats (681, 1419, 1481).
However, the release of prolactin and TSH is dissociated.
TSH secretion is found to be only modestly affected
(1481) or unaffected (1615) by stress or suckling, whereas
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prolactin responses to the same stimuli are quite signifi-
cant (1481, 1615).

Injection of specific antibodies to immunoneutralize
hypophysiotrophic factors (passive immunization) is
widely used to confirm the physiological relevance of a
given factor. TRH antiserum can suppress the proestrous
prolactin surge (963) and attenuate the suckling-induced
prolactin response (405). However, TRH antiserum only
weakly reduces prolactin-releasing activity of the hypo-
thalamic extract (203, 1704), suggesting that TRH is not
the only authentic PRF.

In addition to its well-established role as a prolactin-
releasing hormone, TRH may also affect prolactin secre-
tion by acting within the CNS. It has been reported that
central administration of TRH inhibits prolactin secretion
(1342), most likely through stimulation of TIDA neurons
(836, 1342). Because TRH-immunopositive neural projec-
tions from the paraventricular nucleus to the arcuate
nucleus have been detected (227), there is a morpholog-
ical basis for a direct TRH/dopamine interaction at the
hypothalamic level.

Many studies at the cellular level argue for a role for
TRH in the control of prolactin secretion. TRH receptors
in lactotrophs have been detected by Hinkle and Tashjian
(763). With the use of modern immunocytochemical ap-
proaches, TRH receptors have been found on the plasma
membrane as well as intracellularly in rat lactotrophs
(1917). Primary cultures of rat pituitary cells were stained
with an antibody to the native TRH receptor and with a
bioactive, fluorescent analog of TRH, rhodamine-TRH.
Rhodamine-TRH specifically stained 86% of lactotrophs
and 21% of nonlactotrophs from primary pituitary cell
cultures. Lactotrophs and thyrotrophs accounted for 90%
of cells that were labeled with rhodamine-conjugated
TRH, but there were occasional lactotrophs and thyro-
trophs that did not show detectable staining with antire-
ceptor antibodies or with rhodamine-TRH (1917). These
data imply that some of the functional heterogeneity
among lactotrophs (190, 298, 773, 830, 1625, 1708, 1814,
1921) may result from a differential expression of the TRH
receptor. With the use of TRH receptor immunocyto-
chemistry and rhodamine-labeled TRH, it has been dem-
onstrated convincingly that the TRH receptor undergoes
ligand-directed endocytosis in normal cells (1917). TRH
receptors were localized on the surface of cells before
TRH exposure, and rhodamine-TRH fluorescence was
confined to the plasma membrane when TRH binding was
performed at 0°C, where endocytosis is blocked. When
cells were incubated with TRH at 37°C, receptors were
found in intracellular vesicles in both lactotrophs and
thyrotrophs, and rhodamine-TRH was rapidly internalized
into endosomes at elevated temperatures (1917).

Once bound to the receptor, TRH activates GTP-
binding proteins (1002), which have been characterized as
either Gy (943), G, or Gy, (807). Activation of G, or Gy, in
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turn, activates membrane-bound phospholipase C that
catalyzes the hydrolysis of phosphatidylinositol 4,5-
bisphosphate to yield inositol trisphosphate and diacyl-
glycerol (57, 529, 807, 1684). Inositol trisphosphate medi-
ates the mobilization of nonmitochondrial calcium in
lactotrophs (617). Diacylglycerol, in turn, activates calci-
um-dependent protein kinase C (467) which phosphory-
lates voltage-sensitive calcium channels resulting in in-
creased Ca®" influx, and thus enhances prolactin
exocytosis (563, 564, 747).

TRH was originally depicted as rapidly stimulating a
biphasic pattern of prolactin secretion characterized by a
first phase fast elevation within 30 s followed by a lower
amplitude sustained secondary phase (17, 924). On the
basis of studies in tumorous cell lines, it has been sug-
gested that this pattern of prolactin secretion parallels
and is the result of similar changes in intracellular cal-
cium. More specifically, it has been suggested that inositol
trisphosphate induces an initial rapid release of calcium
from intracellular stores that mediates the first phase of
prolactin secretion while the second phase is the conse-
quence of diacylglycerol-induced activation of protein ki-
nase C, phosphorylation of a voltage-gated calcium chan-
nel, and ultimately entrance of calcium from extracellular
sources (215, 614-616, 722, 971). However, using selec-
tive pharmacological depletion of intracellular calcium
stores or blockade of voltage-sensitive calcium channels,
it was suggested that in normal pituitary cells, calcium
influx and/or transduction pathways linked to calcium
influx are more important to prolactin secretion in re-
sponse to TRH than is liberation of Ca®>" from cytoplas-
mic stores (1558).

Newer data have revealed more of the spatiotempo-
ral complexity of the cytoplasmic Ca>* changes. For in-
stance, using membrane capacitance measurements to
study TRH-induced modulation of exocytosis by metabol-
ically intact perforated patch-clamped rat lactotrophs, it
was found that TRH promotes exocytosis through three
distinct stages (5663). First, within 30 s, TRH transiently
evokes exocytosis that is independent of membrane de-
polarization and extracellular calcium influx, but is likely
driven by Ca®" released from inositol trisphosphate-sen-
sitive intracellular pools. Second, within 3 min of expo-
sure, TRH facilitates depolarization-evoked exocytosis
while inhibiting the voltage-gated calcium current. Fi-
nally, after 8 min, TRH further enhances depolarization-
evoked exocytosis by increasing high voltage-activated
calcium channel current through a protein kinase C-de-
pendent mechanism (564).

Finally, there is a large amount of literature showing
that transient dopamine antagonism (716-721) or tran-
sient dopamine withdrawal (1132-1134, 1136-1138) mag-
nifies the stimulatory effect of TRH on prolactin secre-
tion. Although the data are convincing, the interpretation
must be approached with caution, since it is unlikely that,
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under physiological conditions, dopaminergic neurons be-
come totally quiescent. It seems more likely that the
lactotroph is exposed to diminishing concentrations of
dopamine rather than a complete absence of dopamine.
The effect of a reduction of dopamine exposure on TRH-
stimulated prolactin secretion has yet to be determined.

B) oxyrocIN. Oxytocin is synthesized in the PVN and
supraoptic nucleus (SON) and axonally transported to the
neural lobe where it is briefly stored until release from
terminals. Axons of the oxytocin neurons passing through
the median eminence already form synaptic boutons,
which contact the capillary loops of the median emi-
nence. Indeed, oxytocin release into the long portal ves-
sels has been well-established (620, 1320). Moreover,
short portal vessels connecting neural lobe and the inner
zone of the anterior lobe also provide a potential route for
delivering oxytocin to the adenohypophysis.

The stimulatory effect of neurointermediate lobe ex-
tracts on prolactin release has been thought to be partially
due to the influence of oxytocin in the extracts (1537).
Oxytocin is secreted into the hypophysial portal blood in
10-15 times higher concentrations than found in the pe-
ripheral circulation (620), and high-affinity receptors re-
sembling the uterine oxytocin receptors are present in the
anterior lobe. However, the prolactin-releasing potency
and efficacy of oxytocin in vitro are rather low (827,
1537), and the definitive role of oxytocin as a neurohy-
pophysial PRF requires further attention.

Several studies have previously indicated that, at
least in certain experimental situations, oxytocin may be
involved in the stimulatory regulation of prolactin secre-
tion (1372, 1542). Although a large dose of oxytocin in-
duces arise in plasma prolactin in male or ovariectomized
female rats (1087), it fails to affect prolactin secretion in
lactating rats. In contrast, subcutaneous administration of
a low dose of oxytocin induces a reduction in basal as
well as stress-induced secretion of prolactin in male rats
(1087, 1235, 1243). Attempts to antagonize the action of
endogenous oxytocin in vivo have also resulted in con-
flicting data. Passive immunization with oxytocin antisera
delays and reduces prolactin surges induced by suckling
or by estrogen (1537). On the other hand, injection of a
specific oxytocin antagonist, which blocks suckling-in-
duced milk ejection, does not alter concomitant prolactin
release (867). However, treatment with an oxytocin an-
tagonist prevents the proestrous surge of prolactin (867).
Moreover, oxytocin antagonism blocks the endogenous
stimulatory rhythm (73, 74, 76) that governs prolactin
secretion in female rats (71). Similarly, oxytocin antago-
nism blocks mating-induced prolactin secretion (74).
Therefore, it seems likely that oxytocin may act as a PRF
under some (but not all) physiological states.

In addition to its role as neurohormone, the possibil-
ity of central effects of oxytocin should also be taken into
consideration (1309, 1310). For instance, oxytocin as neu-
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rotransmitter may play a stimulatory role in regulating
TIDA neurons (1919), which, in turn, would convey an
inhibitory influence on prolactin secretion.

C) VASOPRESSIN. Similar to oxytocin, vasopressin is syn-
thesized by the magnocellular neurons located mainly in
the posterior division of the paraventricular and the su-
praoptic nuclei (1657). In addition, vasopressin immuno-
reactivity is also found in the parvicellular neurons of the
medial division of the paraventricular neurons (1657). The
axons of the magnocellular neurons pass through the
median eminence en route to the posterior lobe of the
pituitary gland (782), whereas the parvicellular neurons
project directly to the external zone of the median emi-
nence to terminate on the primary capillary bed from
which the long portal vessels arise (1657). Therefore,
vasopressin can reach the anterior lobe of the pituitary
gland from both sources, through the long or the short
portal systems (673).

Previous studies have clearly indicated that distur-
bances in the water and electrolyte regulation at the level
of the neural lobe severely alters adenohypophysial pro-
lactin secretion (450, 829, 1283). Bilateral anterior hypo-
thalamic deafferentation behind the optic chiasm or le-
sion of the PVN interrupting the paraventriculo-, and
supraoptico-hypophysial tract (948), or denervation of the
neural lobe (1811) result in diabetes insipidus (145) and
prevent suckling-induced prolactin release in oxytocin-
substituted lactating animals. In addition, there is no
suckling-induced hormone response in homozygous
Brattleboro mothers suffering diabetes insipidus due to
the genetic failure of the biosynthesis of arginine vaso-
pressin (829, 1283, 1283). Moreover, passive immuniza-
tions against arginine vasopressin (1283), or the glycopep-
tide moiety of the vasopressin-neurophysin-glycopeptide
precursor, with a highly specific antiserum attenuates the
suckling-induced rise of plasma prolactin (1276). Taken
together, these data suggest that vasopressin and related
peptides play a significant role in regulating prolactin
secretion.

Although arginine vasopressin induces prolactin re-
lease in vivo (1372, 1785, 1809), it does not effectively
release prolactin in vitro (734, 1616). There are arginine
vasopressin receptors in the rat anterior pituitary (47,
957), and arginine vasopressin is present in high concen-
tration in portal blood (1926). In addition, neurophysin II,
the midportion of the prepro-vasopressin molecule, can
stimulate prolactin release from the anterior lobe but not
through a direct effect on the pituitary gland (1618). The
39-amino acid glycopeptide comprising the COOH termi-
nus of the vasopressin precursor has been reported to
stimulate (1276), inhibit (1567), or have no effect (829) on
prolactin release from cultured pituitary cells. Passive
immunization studies support the stimulatory role of this
peptide in the control of prolactin secretion (1276). De-
spite some controversial and inexplicable results, vaso-
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pressin, its precursor, its specific neurophysin, or other
factors associated with diabetes insipidus may affect pi-
tuitary prolactin secretion (50, 952).

Vasopressin exerts its physiological effects by acti-
vating at least two different receptors: the V, (“vascular”)
vasopressin receptor is most abundant in vascular smooth
muscle cells and hepatocytes, whereas the V, receptors
were originally found in the renal tubular epithelial cells
(857). The V, couples to the phosphoinositide signaling
pathway, whereas the V, receptors activate adenylate
cyclase (857). The arginine vasopressin-induced increase
in prolactin secretion is mediated mainly through V,; (50,
952), although other vasopressin receptor(s) may also
play a role (954, 955).

D) THE SECRETIN/VIP FAMILY. Several biologically active
peptides of the secretin/VIP family, such as VIP, peptide
histidine-isoleucine (PHI) and the recently discovered pi-
tuitary adenylyl cyclase-activating polypeptide (PACAP)
have been shown to significantly affect pituitary prolactin
secretion.

VIP was originally isolated from porcine small intes-
tine (1527). Its presence was then demonstrated in the
hypothalamic paraventricular nuclei and the median em-
inence (162, 380, 1010, 1191, 1399, 1638). PHI and VIP are
synthesized from a common precursor (848) and are ho-
mologous to each other (1709, 1727). Both peptides are
secreted in equimolar amounts into hypophysial portal
blood (1608). The new relative in this family is PACAP
(1208). PACAP is a VIP-like hypothalamic peptide occur-
ring in two forms, PACAP-27 and the COOH-terminally
extended PACAP-38. These peptides share strong se-
quence homology (68%) with the NH,-terminal portion of
VIP and can induce a very strong accumulation of cAMP
in cultured anterior pituitary cells (1208) by binding to
high-affinity receptor sites (1623).

VIP can stimulate prolactin release both in vivo and
in vitro (917, 1512 1591, 1823) through a direct action on
VIP receptors found in anterior pituitary cells (125). VIP
stimulates prolactin release in vitro between 10~ and
10~ M concentrations in a dose-related manner (1608—
1610). Moreover, it is detected in the portal blood in a
concentration ~10 times higher than that found in the
general circulation (1528), which is sufficient to stimulate
prolactin release from pituitary cells in vitro. These find-
ings suggest that VIP may be an important mediator of
prolactin release in different physiological situations.
Moreover, when passive immunization is performed to
neutralize VIP in the plasma (891, 1611), stimulation of
prolactin release by ether stress is completely blocked
(1611), whereas suckling-induced prolactin response is
only partially inhibited (4). Simultaneous administration
of VIP and PHI antisera completely blocks 5-hydroxytryp-
tophan-induced prolactin release (891), while passive im-
munization with antisera to either VIP or PHI results in
only a minimal effect (891). Taken together, these data
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suggest that endogenous VIP-like peptides likely play a
role as hypothalamic neurohormones (i.e., PRF) by trans-
ducing central stimulatory influences on the pituitary lac-
totrophs (1313, 1506), particularly those which are con-
veyed by serotonergic mechanisms (891). VIP also plays a
role as an autocrine regulator of prolactin secretion (715,
1275), and as such, can be released by the lactotrophs
themselves. Therefore, the source of VIP affected by in
vivo immunoneutralization is not clear. As to what pro-
portion of the reduction of prolactin release by VIP anti-
serum is due to the neutralization of VIP of hypothalamic
origin remains to be established.

Similar to VIP, PHI can stimulate prolactin release in
the freely moving rat (892, 1343, 1873) as well as from
dispersed pituitary cells (1538). The relative contribution
of PHI and VIP to the control of prolactin secretion re-
quires further investigation.

Systemic injection of PACAP-38 significantly and
dose-dependently stimulates pituitary prolactin in both
male (1025) and nonsuckled lactating female rats (67).
This effect of PACAP on prolactin secretion is likely
related to its stimulation of prolactin gene expression
(212, 352, 1815) through a protein kinase A-mediated path-
way (353). Surprisingly, PACAP-38 dose-dependently in-
hibits prolactin release in both monolayer cultures (858)
and reverse hemolytic plaque assay (858) of rat pituitary
cells. Thus in vitro and in vivo experiments provide con-
trasting effects of PACAP-38 on pituitary prolactin re-
lease.

Early observations already indicated that, in addition
to their direct action on lactotrophs, there is a hypotha-
lamic site of action for some of these peptides (849, 917,
1823). However, there is no consensus as yet concerning
the central effects of the secretin/VIP peptide family on
prolactin secretion. For instance, preoptic injection of
VIP, but not of secretin or PHI, stimulates prolactin se-
cretion (123), suggesting specific actions of VIP on the
preoptic mechanisms governing prolactin secretion in
ovariectomized rats (123).

Both PACAP and VIP, when administered intracere-
broventricularly to conscious ovariectomized estradiol-
implanted female rats, stimulate TIDA activity (813).
However, the effects of these peptides on prolactin secre-
tion are opposite: whereas PACAP inhibits, VIP stimulates
prolactin secretion (813). The inhibitory effect of PACAP
on prolactin secretion is consistent with its stimulation of
hypothalamic dopaminergic activity. It seems, however,
that in the case of VIP, an additional unknown mechanism
comes into play [perhaps an increase of PRF from hypo-
thalamic sources (74, 1547)] that would override the con-
sequence of TIDA activation. Interestingly, in sheep,
PACAP also inhibits prolactin secretion (1560) by acting
within the medial basal hypothalamus (40). However, in
anesthetized male rats, central administration of
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PACAP-27 or PACAP-38 elicits a dose-related increase in
plasma prolactin level (1900).

E) opions. The discovery of opiate receptors in the
CNS in the early 1970s (1405, 1636, 1731) initiated the
search for endogenous ligands for these receptors. The
first two endogenous opioid peptides (EOP) were soon
discovered (815, 816) and termed enkephalins (Met-en-
kephalin, H-Tyr-Gly-Gly-Phe-Met-OH; and Leu-enkephalin,
H-Tyr-Gly-Gly-Phe-Leu-OH). Later studies revealed that
endogenous opioids consist of three separate peptide
families, enkephalins, dynorphins, and endorphins, en-
coded by three separate genes (19). Based on pharmaco-
logical characteristics and the biological response they
initiate, three major types of opiate receptors have been
identified (1130), and later cloned (u, 6, and k) (245, 935,
1119, 1196). They all belong to the seven transmembrane
G protein-coupled receptor superfamily (934, 1119).

The enkephalin immunopositive neurons are the
most widely distributed among the EOP expressing neu-
rons (931). In the hypothalamus the paraventricular and
supraoptic nuclei are abundant in enkephalin-immuno-
positive neurons that project to the posterior lobe of the
pituitary gland. The endorphin/ACTH immunopositive
neurons are distributed almost exclusively in the medial
basal hypothalamus (arcuate nucleus, extended rostrally
into the retrochiasmatic area, caudally into the submam-
milary region, and dorsally into the zone between the
ventricular surface and the ventromedial hypothalamic
nucleus) and in the brain stem (nucleus intercomissuralis
of the tractus solitarius) (1316).

Distribution of the opiate receptors in the hypothal-
amus was studied extensively, first by receptor autora-
diography (1034) and, following the molecular cloning of
various types of opiate receptors (522, 935, 1041), by in
situ hybridization (1119). These studies revealed an abun-
dant expression of k-receptors in the magnocellular neu-
rons (PVN, SON), arcuate nucleus, and medial preoptic
area (1119). However, with the exception of the medial
preoptic area, expression of the u-receptor is modest in
these areas (1119), which seems somewhat discordant
with the previous pharmacological characterization of the
opiate receptors affecting TIDA neurons and/or prolactin
secretion (965). It is important to add, however, that by
immunohistochemical methods, strong staining for a u-re-
ceptor-like protein is found in the external zone of the
median eminence (1119). Because little u-opiate receptor
mRNA was found in the median eminence, it is assumed
that the up-receptor protein is synthesized elsewhere and
transported to the median eminence along the axons of
the phenotypically uncharacterized neurons. The latter
findings strongly indicate a presynaptic inhibitory func-
tion of u-receptors at the median eminence level. It has
been reported that endogenous opioids can antagonize
the effect of dopamine at the pituitary level (1511), al-
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though this conclusion was later contested by others
(448).

A considerable amount of data obtained with a wide
variety of opiate agonists indicate that endogenous opi-
oids indeed play an important role in regulating prolactin
secretion (1346). The opiate receptor subtypes mediating
the effect of opiate agonists on prolactin secretion are
predominantly w and k (984, 985). Opioid receptor block-
ade by a single intravenous injection of naloxone com-
pletely suppresses the proestrous prolactin surge (833),
indicating that some endogenous opioid activity is re-
quired to generate the prolactin secretory surge during
proestrus in the rat. In addition, endogenous opioid pep-
tides play an important role in the hypothalamic control
of the menstrual cycle (545, 546).

Recent investigations reinforced the notion that en-
dogenous opioids contribute to suckling-induced prolac-
tin secretion by inhibiting neuroendocrine dopaminergic
neurons in the hypothalamus (70). Sustained naloxone
infusion (12 h) decreases prolactin concentration in the
serum of nursing lactating dams. In the absence of suck-
ling stimuli, the infusion of naloxone does not influence
the already low prolactin concentration. However, it ro-
bustly diminishes suckling-induced prolactin secretion
following pup deprivation. Consistent with the effects on
prolactin secretion, TH activity in the median eminence is
elevated, and TH mRNA level is increased in the arcuate
nucleus by sustained naloxone infusion (70). In addition,
endogenous opioids also mediate the nocturnal surge of
prolactin secretion in pseudopregnant rats (1525).

Most stressful stimuli activate inhibitory neuronal
pathways that decrease the activity of TIDA neurons re-
sulting in an increase of prolactin secretion (415, 415, 866,
868, 1076). Endogenous opioids (83, 440, 547, 693, 1806)
and opiate agonists (31, 86, 440, 693, 908, 1121, 1123, 1467,
1806) suppress the activity of TIDA neurons, presumably
by activation of w and/or k type of opiate receptors (261),
while increasing prolactin secretion (742, 1804, 1805).
Because specific opiate antagonists suppress stress-in-
duced prolactin secretion in most cases (473, 866, 1504,
1540, 1634, 1789, 1891), it seems likely that endogenous
opioids contribute to the stress-induced increase of pro-
lactin secretion via inhibition of the TIDA system. The
responsiveness of TIDA neurons to stress is not influ-
enced by the stage of the estrous cycle, indicating that the
level of ovarian steroids in the circulation may not be the
primary feedback signal affecting the responsiveness of
TIDA neurons to endogenous opioids (415). However,
sustained elevation of adrenal glucocorticoids, resulting
from chronic activation of the hypothalamo-pituitary-ad-
renal axis, decreases the efficacy of opioid agonists to
affect TIDA activity and/or prolactin secretion (5640, 541,
908, 937). These latter observations indicate that the reg-
ulation of prolactin secretion by endogenous opioids is
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well integrated into the overall neurohumoral mecha-
nisms of adaptation (homeostasis).

Hyperprolactinemia, brought about by pregnancy,
pseudopregnancy, lactation, or experimental manipula-
tions (e.g., pituitary grafts under the kidney capsule,
chronic D, dopamine antagonist administration), invari-
ably results in elevated enkephalin gene expression in
TIDA neurons (1185, 1187). The latter effect of heightened
prolactin secretion is augmented by progesterone,
whereas estradiol has little or no effect (1187). Although
enkephalins might serve as a negative-feedback signal
that regulates TIDA activity during pregnancy in an auto-
crine manner (1187), the physiological significance of
these intriguing observations is still uncertain.

It is well established that certain elements of the
neural circuitry regulating prolactin secretion are espe-
cially sensitive to ovarian and/or adrenal steroids. The
actual hormonal milieu and the previous history of the
animal seems equally important to determine the charac-
teristics of the regulation of prolactin secretion by endog-
enous opioids. For instance, long-term application of es-
tradiol to the arcuate nucleus reverses the role of
endogenous opioids and serotonin in the regulation of
prolactin secretion, whereas opioid antagonism with nal-
oxone or serotonin synthesis inhibition by para-chloro-
phenylalanine both elevate prolactin secretion (281, 282).
Moreover, the prolactin response to an enkephalin analog
is dependent on the presence or absence of the suckling
stimulus (1278).

Although extrahypothalamic site(s) whereby endog-
enous opioids alter prolactin secretion cannot be ex-
cluded, the prevailing view of the locus of endogenous
opioids’ action asserts that it takes place at the hypotha-
lamic level (1485, 1836, 1880). Indeed, chemical lesions
within the arcuate nucleus by neonatal administration of
monosodium glutamate impairs the ability of morphine to
induce prolactin secretion (49) while the opiate antago-
nist naloxone diminishes the release of prolactin evoked
by electrical stimulation of the medial basal hypothala-
mus (48). A number of functional studies indicate that
opioids directly affect the activity of the TIDA neurons
(472, 742, 1836). Recently described neuroanatomical
studies support this assertion (1119).

Prolactin at a concentration of 100 nM stimulates the
release of B-endorphin from hypothalamic organ culture
while decreasing the secretion of gonadotrophic hor-
mone-releasing hormone (GnRH) (265). The latter effect
of prolactin is blocked by naloxone, indicating that hyper-
prolactinemia-induced depression of gonadotropin secre-
tion is mediated by endogenous opioids (265). The con-
nection between hyperprolactinemia and the suppression
of GnRH secretion by persistent activation of an endoge-
nous opioid system is supported by several other obser-
vations. For instance, the polycystic ovarian condition
induced by estradiol valerate (which induces hyperpro-
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lactinemia) can be relieved by chronic treatment with an
opiate antagonist (290).

F) anG 1. The octapeptide angiotensin II is the main
effector of the renin-angiotensin system (194, 1521). The
final steps of its biosynthesis involve consecutive proteo-
lytic cleavages of its inactive precursors, angiotensinogen
and angiotensin I, by renin and angiotensin converting
enzyme (ACE), respectively (194, 544). Angiotensin II is
produced both systemically and locally in various tissues,
such as the vascular endothelium, heart, brain, pituitary,
ovary, and adrenal gland (194, 544, 1521). It is important
in regulation of blood pressure, vascular tone, and salt
and water homeostasis, and it can influence cell growth,
migration, differentiation, and apoptosis in many different
target tissues (194, 544, 1521).

Pharmacologically, angiotensin receptors have been
classified into two subtypes: AT, and AT, receptors (194,
243, 1751). Although both AT, and AT, receptors have
been detected in the brain (869, 870, 1021, 1023, 1778), it
appears that AT, is the dominant receptor subtype in
adults (1022, 1364, 1778). In addition to the AT, receptor
(832), two isoforms of the AT, receptor, AT, and AT,
have been isolated in rodents by molecular cloning (711,
850, 894, 1710). The AT,y is the predominant ANG II
receptor expressed in the pituitary gland (1022) while
AT, , is present in areas of the hypothalamus pertinent to
the regulation of pituitary function (869, 871, 871a, 1022,
1777).

Numerous observations indicate clearly that ANG II
could contribute to the physiological regulation of prolac-
tin secretion, both at hypothalamic (1265, 1266, 1521,
1673, 1675, 1678, 1777) and pituitary (14, 14, 36, 409, 746,
1575) levels. When applied directly to pituitary cells in
vitro, ANG II seems more specific than TRH, the leading
contender among the PRF candidates, as it releases pro-
lactin while it has little or no effects on other pituitary
hormones (14). Moreover, the in vitro efficacy of ANG II
on prolactin secretion is greater than TRH (14).

Centrally administered ANG II appears to be inhibi-
tory to prolactin secretion in male (1266) as well as
female (1265, 1521, 1675, 1678) rats, regardless of the
endocrine status of the animal. On the other hand, the
endogenous angiotensin system in the hypothalamus does
not seem to be involved in maintaining the low level of
basal prolactin secretion, since centrally administered an-
giotensin receptor antagonist or angiotensin convertase
inhibitor do not increase prolactin secretion of ovariecto-
mized female (1265) or male (1266) rats. However, the
blockade of the central angiotensin system by these com-
pounds greatly facilitates stress- or estradiol-induced pro-
lactin secretion (1265, 1266, 1521). On the basis of these
data, it has been proposed that a possible function of the
endogenous angiotensin system in the hypothalamus is to
limit the magnitude of prolactin secretion in response to
environmental or endogenous stimuli (1521, 1673).
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Several studies support the hypothesis that hypotha-
lamic AT, receptors participate in the ovarian steroid
feedback on prolactin secretion (1521, 1673). The number
of AT, receptors in the arcuate nucleus is inversely re-
lated to prolactin secretion: low during proestrus and
highest at estrus and confined to the dorsomedial portion
of the arcuate nucleus (15686) where the cell bodies of the
TIDA system are located (527). In subsequent studies, it
has been demonstrated that a combined treatment of
estradiol and progesterone induces ANG II AT, , receptor
mRNA expression specifically in dopaminergic neurons in
the dorsomedial arcuate nucleus (871a). As demonstrated
earlier, these dopaminergic neurons also express estra-
diol and/or progesterone receptors (967, 1548, 1549, 1626,
1861). It appears, therefore, that the ovarian steroid-in-
duced regulation of ANG II receptors in TIDA neurons
exemplifies the generally accepted concept that a wide
array of central peptidergic and peripheral hormonal sig-
nals converge on and are integrated by the TIDA neurons
(Fig. 5).

Signaling events coupled to AT,; receptors include
elevation of phosphatidylinositol hydrolysis through
phospholipase C activation and intracellular Ca®>" mobi-
lization, increase of cAMP formation, activation of multi-
ple protein kinases (protein kinase C, several protein
tyrosine kinases, mitogen-activated protein kinases), and
protooncogene expression (506, 513, 610, 1075, 1572,
1902). There is ample evidence that an increase in phos-
phatidylinositol hydrolysis through phospholipase C acti-
vation is the major initial signaling event elicited by ANG
II receptor activation in lactotrophs (269, 270). In addi-
tion, ANG II causes an elevation in cAMP formation in
lactotroph-enriched pituitary cell preparations in parallel
with its stimulatory effect on prolactin secretion (93). The
effect of ANG II on adenylyl cyclase seems to be phos-
pholipase C-mediated since it is sensitive to inhibition of
the phospholipase C/protein kinase C pathway (93). Do-
pamine inhibits angiotensin-induced phosphatidylinositol
turnover and cAMP formation in a pertussis toxin-sensi-
tive manner (513). Peripheral hormones such as ovarian
steroids or glucocorticoids seem to modulate the sensi-
tivity of adenohypophysial cells to the dopaminergic in-
hibition of ANG II effects (513, 1265, 1675).

G) SUBSTANCE P. Substance P and related peptides (neu-
rokinin A and neurokinin B) are members of the mamma-
lian tachykinin peptide family, currently referred to as
neurokinins (1456). These peptides result from process-
ing two preprotachykinin (PPT) gene products. Substance
P and neurokinin A originate from PPT-A, whereas neu-
rokinin B originates from PPT-B. The physiology and
pharmacology of these peptides and their receptors have
been reviewed (1359, 1456). Although these peptides have
been found in many different tissues, they are mainly
expressed in neurons (932, 1359). It appears that their
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FIG. 5. Direct effects of neurotransmitters, neuromodulators, and
peripheral hormones on the activity of tuberoinfundibular dopaminergic
system (TIDA). The inhibitory agents (left) will promote an increase of
prolactin secretion as a result of diminishing TIDA activity. On the other
hand, the stimulatory neurotransmitters and progesterone (right) will
tend to decrease prolactin secretion as a result of increasing output of
TIDA neurons. It should be noted, however, that many of these agents
have multiple levels of action, often with opposing biological effect.
Therefore, in some cases (*), effects on PRF and/or directly at the
lactotrophs will prevail over the influence on TIDA activity. See text for
references and further details. 5-HT, serotonin; NE, norepinephrine; HA,
histamine; EOP, endogenous opioid peptides (endorphin, enkephalin,
dynorphin, nociceptin/orphanin); GAL, galanin; SST, somatostatin;
CCKg, cholecystokinin-8; GABA, y-aminobutyric acid; NO, nitric oxide;
ACh, acetylcholine; TRH, thyrotropin releasing hormone; OT, oxytocin;
VP, vasopressin; VIP, vasoactive intestinal polypeptide; PACAP, pitu-
itary adenylate cyclase-activating peptide; ANG II, angiotensin II; NT,
neurotensin; NPY, neuropeptide Y; CT, calcitonin; BOM, bombesin-like
peptides (gastrin-releasing peptide, neuromedin B, neuromedin C); ANP,
atrial natriuretic peptides.

main physiological function is related to neurotransmis-
sion (932, 1359).

High immunoreactive substance P concentration is
found in the median eminence-arcuate region in primates
(777, 1005, 1500), while it is less abundant in rodents (228,
376, 1062). However, in rats receiving colchicine intraven-
tricularly, numerous substance P immunoreactive cell
bodies and fibers are found in the arcuate nucleus, the
ventral portion of the ventromedial nucleus, the dorsome-
dial nucleus, and the periventricular area (1776). Abun-
dant immunoreactive fibers are also found in the median
eminence surrounding capillaries in the subependymal
layer, as well as in the palisade structure in the external
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layer of the median eminence (1776). In the arcuate nu-
cleus, synapses of substance P fibers are readily detect-
able by immunoelectron microscopy. In the median emi-
nence, substance P immunoreactive fibers are frequently
seen in the subependymal, internal, and external zones
(1776). In the median eminence, immunoreactive sub-
stance P fibers do not form synapses but appear terminate
on the basal lamina covering the pericapillary space
(1776). In some cases, extrusions of substance P immu-
noreactive fibers into the perivascular space are also ob-
served. Moreover, a high level of expression of substance
P receptors has been detected in all of these areas of the
hypothalamus (1120). Taken together, these neuroana-
tomical attributes indicate strongly that substance P acts
as a neurotransmitter in the arcuate nucleus and other
parts of the hypothalamus and, as such, is likely involved
in the regulation of prolactin secretion. In addition, sub-
stance P may modulate the release of PRF/PIF neurohor-
mones presynaptically in the median eminence. Finally,
the rather conspicuous presence of immunoreactive sub-
stance P fibers in the external zone of the median emi-
nence indicates that substance P could have a role as a
neurohormone and might reach the lactotrophs in the
pituitary gland through the long portal vessels (1776).

Specific substance P binding sites have been de-
tected in the pituitary (930, 1006, 1007), and by the com-
bined application of receptor autoradiography and immu-
nocytochemistry, specifically in lactotrophs (1008).
Prolactin secretion is enhanced when pituitaries are in-
cubated in the presence of substance P (1819, 1820).
Moreover, prolactin secretion increases following intrave-
nous administration of substance P (1482), indicating that
substance P probably has a direct action on lactotrophs.

Substance P injected intraventricularly induces an
increase in prolactin secretion in primates (489) as well as
rats (1820). Microinjection of substance P into the medial
preoptic area of conscious, freely moving animals in-
creases prolactin secretion both in normal and orchidec-
tomized rats (1416). Conversely, substance P antagonist
or substance P antiserum injection in the same area de-
creases prolactin secretion, indicating that endogenous
substance P in the medial preoptic area exerts a stimula-
tory influence over prolactin secretion (1416). However,
negative results with centrally injected substance P anti-
serum or substance P antagonist have also been reported.
For instance, in castrated male rats, substance P antago-
nists or substance P antiserum failed to influence prolac-
tin secretion (402). It appears that the actual effect of
substance P on prolactin secretion depends on the dose
and route of administration: intracerebroventricularly in-
jected substance P stimulates prolactin secretion,
whereas at lower doses it is inhibitory (80, 81, 701).
Similar paradoxical effects of substance P have been
observed with intravenous administration (1482, 1739,
1820).
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On the basis of pharmacological and neuroanatomi-
cal evidence, there is little doubt that substance P is an
important factor in the regulation of prolactin secretion
(861). However, the neural mechanism by which sub-
stance P or other members of the tachykinin/neurokinin
family exert their action on prolactin secretion is not yet
understood. The fact that these peptides have multiple
sites of action, together with the possibility that biologi-
cally opposing effects can be elicited by these peptides at
different loci, makes it difficult to explore their physio-
logical role in regulating pituitary hormone secretions.
Local administration of recently developed specific neu-
rokinin receptor agonists and antagonists (932) would
help to elucidate the precise physiological role of sub-
stance P and other tachykinins/neurokinins in regulating
prolactin secretion.

There are some observations suggesting that tachy-
kinins in the CNS and the pituitary are involved in pro-
lactin feedback regulation. For instance, antiserum to
substance P reduces the increase of GABA content in the
hypothalamus induced by hyperprolactinemia (11). More
information is available on substance P concerning the
gonadal steroid-mediated feedback on prolactin secre-
tion. Estradiol increases substance P content in medial
basal hypothalamus, dorsomedial hypothalamus, and
mammillary bodies in guinea pig (166). In female rats,
pituitary content of substance P and substance P mRNA
levels decrease dramatically after estradiol treatment
(1338). Because the hypothalamic level of substance P
mRNA was unchanged in these experiments, the regula-
tion of substance P gene expression by estradiol in female
rats seems to be confined to the pituitary (1338).

Three receptors subtypes of the mammalian neuro-
kinins have been identified (NK-1, NK-2, and NK-3) and
sequenced by molecular cloning. All belong to the G
protein-coupled receptor superfamily (for references, see
Refs. 932, 1456). Neurokinin receptor activation leads to
an increase of intracellular free Ca®", an effect mediated
through Gg-activated phospholipase C (932). In lac-
totroph-enriched anterior pituitary cell cultures, sub-
stance P caused a translocation of certain protein kinase
C isozymes (1158).

H) GALANIN. The peptide galanin consists of 29 amino
acids, originally isolated from porcine intestine and
named after its NHy- and COOH-terminal residues, glycine
and alanine (1728). The rat galanin amino acid sequence
was first deduced from an estrogen-induced prolactinoma
cDNA library (1839).

Galanin has a widespread distribution throughout the
CNS and peripheral nervous system. The patterns of ga-
lanin-containing neurons in the CNS and their possible
physiological functions have been reviewed (136, 1188).
The heavy presence and specific distribution of galanin-
positive neurons in the hypothalamus suggested an im-
portant function for this peptide in the neuroendocrine
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regulation of anterior pituitary hormone secretion. In-
deed, the incidence of galanin-immunoreactive cells is the
highest in the hypothalamus, and the galanin immuno-
positive fibers are most abundant in the external zone of
the median eminence. Most of the fibers in the median
eminence originate from the ventrolateral portion of the
arcuate nucleus (for references see Ref. 1188). The con-
centration of galanin in the portal blood is 4- to 10-fold
higher than in the peripheral blood (1078). It appears that
galanin meets all criteria to be considered as a hypotha-
lamic-hypophysiotrophic hormone (1080). However, gala-
nin is also abundantly expressed in the anterior lobe of
the pituitary gland (909). A sex difference in galanin ex-
pression is detectable in the median eminence, neuroint-
ermediate lobe, and the anterior pituitary where the con-
centration of immunoreactive galanin is significantly
higher in females (596). Interestingly, a few galanin-posi-
tive nerve fibers have been also detected in the anterior
lobe of the rat (1061).

It appears that the anterior pituitary expresses a
unique high-affinity galanin receptor that differs in its
ligand structure-affinity requirements from galanin recep-
tors previously characterized in the brain (1890). Only the
hypothalamus has the capacity to express both types of
galanin receptors (1890). It is clear that the galanin recep-
tors belong to the G protein-coupled receptor superfamily
(136, 914, 1188, 1842); however, the intracellular signaling
mechanism coupled to these receptors in lactotrophs has
not yet been elucidated. Information provided by nonpi-
tuitary cell types offers little clue to the mechanism of
galanin’s action in lactotrophs (914). For example, it has
been reported that galanin is inhibitory on muscarinic
acetylcholine receptor-mediated stimulation of phospho-
inositide turnover in the hippocampus (1366) and acti-
vates ATP-dependent K* channels in pancreatic tumor
cells (471) as well as insulinoma (996) and pheochromo-
cytoma (439) cell lines in a pertussis toxin-sensitive man-
ner. All these signaling events would be inconsistent with
a direct prolactin-releasing effect of galanin in lac-
totrophs. Investigations on a clonal pituitary cell line
implicate phospholipase C activation as a key event lead-
ing to sustained elevation of prolactin secretion by gala-
nin (727).

Galanin is capable of stimulating prolactin secretion
in a pituitary cell line, GH;/B6, predicting the possibility of
a direct pituitary action (697). Indeed, it has been shown
that galanin is capable of stimulating prolactin secretion
in a cultured pituitary cell preparation (465, 1890, 1890)
and that specific galanin antiserum inhibits basal prolac-
tin secretion (1890). The latter observation strongly sug-
gests a paracrine and/or autocrine regulation by galanin
(discussed in sect. viiB1AIl). Moreover, galanin also has
been shown to directly regulate lactotroph proliferation
(1889). On the basis of the fact that galanin is secreted
into peripheral blood (909, 1078), and its secretion is
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regulated by hypothalamic factors such as dopamine and
somatostatin (inhibition), as well as by TRH (stimulation)
(824), it has been suggested that galanin might be a novel
anterior pituitary hormone (1188, 1842).

Centrally administered galanin increases prolactin
secretion, whereas it has a weak or no effect when given
peripherally (973, 1177, 1360). These observations indi-
cate that the prolactin-releasing effect of galanin likely
results from its hypothalamic action, possibly by altering
the balance between stimulatory and inhibitory outputs of
the prolactin release-regulating circuitry. This latter hy-
pothesis is supported by observations that galanin-con-
taining axons synapse on dopaminergic neurons in the
arcuate nucleus (806) and that galanin reduces [*H]do-
pamine release from the median eminence (1327) and
stimulates VIP release from the hypothalamus (844, 844).
Moreover, the central action of galanin on prolactin se-
cretion requires serotonin (975), as-noradrenergic, and
opioid elements (793, 976). Passive immunization experi-
ments with specific galanin antiserum indicate that en-
dogenous galanin may not play a significant role regulat-
ing prolactin secretion in male rats (1360). On the other
hand, galanin presumably plays an important role in reg-
ulating prolactin secretion during proestrus in female rats
(1079, 1188). Because passive immunization against gala-
nin blunts the preovulatory prolactin surge, it is assumed
that the contribution of endogenous galanin to neural
events leading to the proestrous prolactin surge is stimu-
latory (1079, 1188).

Hyperprolactinemia, induced by implanting anterior
pituitaries under the renal capsule, reduces galanin con-
tent in the pituitary (726). Chronically high prolactin con-
centration in the blood also suppresses estradiol-induced
galanin expression in the pituitary (726). How hyperpro-
lactinemia affects galanin in the CNS is not yet known.

It has been shown that the gene encoding rat galanin
contains a functional estrogen response element in its
regulatory region (1842). The galanin mRNA-inducing ef-
fect of estradiol is most impressive in the pituitary (see
sect. viiB1AlII). Although less robust than in the pituitary,
estrogens clearly have a positive effect on galanin gene
expression in the hypothalamus (910, 1033).

1) NEUROTENSIN. Neurotensin, a peptide of 13 amino
acids, was originally isolated from bovine hypothalamus
(288). The potential role of neurotensin in neuroendo-
crine regulation has been reviewed by Aronin et al. (89)
and more recently by Rostene and Alexander (1507).

It is intriguing that there is extensive coexistence of
neurotensin and dopamine in hypothalamic arcuate and
periventricular neurons (831). Neurotensin is present in
the median eminence (946) and in the anterior lobe of the
pituitary gland (630). The major, but not exclusive, source
of neurotensin immunoreactivity in the external layer of
the median eminence is the neuronal somata located in
the hypothalamic arcuate nuclei (946).
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Several observations indicate that neurotensin is ca-
pable of affecting lactotrophs in vitro (5605). For example,
neurotensin dose-dependently increases prolactin secre-
tion (ED5, = 0.6 nM), an action additive with TRH and VIP
(505). Because neurotensin is present in a high concen-
tration in the median eminence (946), it seems reasonable
to assume that neurotensin is a potential PRF distinct
from TRH or VIP (505).

Neurotensin has opposite effects on prolactin secre-
tion, depending on the site of administration. Intracere-
broventricular administration of neurotensin decreases,
whereas peripheral administration of neurotensin in-
creases prolactin secretion (964, 1166, 1167, 1482), indi-
cating that neurotensin can affect the neuroendocrine
regulation of prolactin secretion at multiple levels (1166).
It seems likely that neurotensin causes stimulation of
prolactin secretion by acting at a site(s) which is outside
of the blood-brain barrier (1166). As for the locus of
central inhibition of prolactin secretion, the stimulation of
TIDA neurons by neurotensin offers a plausible mecha-
nism (964, 1167). Indeed, several observations indicate
that neurotensin enhances the activity of TIDA neurons
(692, 964, 1167, 1373). In addition, centrally administered
neurotensin can prevent prolactin secretion elicited by
stress or serotonergic or opioid agonists (1166, 1167,
1753). The effect of neurotensin on the TIDA system likely
results from a direct action on these neurons (964).

Data provided by passive immunization with a highly
specific neurotensin antiserum conversely reflect the ef-
fects of exogenous peptide administration and further
emphasize the physiological importance of neurotensin in
regulating prolactin secretion (1166). For instance, intra-
ventricular injection of a neurotensin antiserum results in
an increase in prolactin secretion, whereas intravenous
injection of the same antiserum leads to a decrease in
prolactin secretion (1166). These experiments reveal a
central (possibly hypothalamic) inhibitory and a periph-
eral (possibly pituitary) stimulatory influence of endoge-
nous neurotensin on prolactin secretion. The changes in
neurotensin concentration in the median eminence (fol-
lowed over time by push-pull perfusion technique) corre-
late well with the surge of prolactin secretion induced by
estradiol priming (1866).

Lactation increases neurotensin immunoreactivity in
the hypothalamus, particularly in the TIDA neurons
(1126). That a physiological hyperprolactinemia coincides
with an enhancement of neurotensin expression, espe-
cially in neurons which are responsible for hypothalamic
inhibition of prolactin secretion, indicate, albeit indi-
rectly, that neurotensin might play a role in mediating
prolactin feedback signaling. Indeed, recent pharmaco-
logical experiments using a specific neurotensin antago-
nist, SR-48692, provide direct evidence that neurotensin
mediates the hyperprolactinemia-induced activation of
TIDA neurons in both male and female rats (751).

FREEMAN, KANYICSKA, LERANT, AND NAGY

Volume 80

The expression of the neurotensin gene is intricately
regulated by steroid hormones as well as second messen-
ger signals at the promoter level. A synergistic regulation
of neurotensin gene expression by cAMP and glucocorti-
coids has been reported (1315). Sexually dimorphic neu-
rotensin neurons in the preoptic area possess estradiol
receptors (752), and female rats have a larger number of
neurons bearing both neurotensin and estradiol receptors
(752). Interestingly, neonatal masculinization with testos-
terone propionate selectively increases neurotensin con-
tent in the medial basal hypothalamus but not in the
medial preoptic area (444).

It appears that neurotensin does not affect adenylyl
cyclase in lactotrophs (1179), and its stimulatory influ-
ence on prolactin secretion results from activation of the
intracellular Ca®*-mobilizing cascade as well as by in-
creasing Ca®" influx through voltage-dependent calcium
channels (1179). In addition, arachidonic acid release and
activation of the lipoxygenase pathways may also contrib-
ute to the prolactin-releasing effect of neurotensin (271,
1179). In the CNS, neurotensin activates dopaminergic
neurons via a non-pertussis toxin-sensitive G protein,
likely Gay; (1856).

J) NEUROPEPTIDE Y. Neuropeptide Y is a member of the
pancreatic polypeptide family isolated by Tatemoto et al.
in 1982 (1725, 1726). Neuropeptide Y has a multifaceted
role in a wide variety of physiological functions (897), and
its physiological role in modulating LH secretion is espe-
cially well established (5679, 897).

With the use of specific neuropeptide Y antisera,
detailed maps of the neuropeptide Y systems in the CNS
have been provided (for references, see Ref. 897). High-
density neuropeptide Y-positive terminals are found
throughout the medial preoptic and anterior hypotha-
lamic areas, as well as the periventricular, suprachias-
matic, paraventricular, and supraoptic nuclei (328, 430,
1286, 1336). The medial basal hypothalamus is particu-
larly rich in neuropeptide Y-positive nerve endings, espe-
cially the arcuate nucleus and the median eminence. The
majority of the neuropeptide Y terminals have been found
in the internal and the subependymal zone, although fi-
bers in the external zone in close proximity to the portal
capillaries are detected (1169, 1172). Many neuropeptide
Y-positive fibers lie in close proximity to the cell bodies
and dendrites of luteinizing hormone releasing hormone
(LHRH), CRH, oxytocin, vasopressin, and TRH neurons
(1800). Neuropeptide Y and norepinephrine are frequently
found colocalized in many areas in the CNS and in the
peripheral sympathetic system (525, 526, 776, 781, 1561).
It appears that, in many cases, neuropeptide Y and nor-
epinephrine act in concert to modulate target cell func-
tion (897). However, neuropeptide Y is not confined to the
norepinephrinergic system in the CNS because several
neuropeptide Y-positive perikarya have been detected in
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the hypothalamus, especially in the ventromedial portion
of the arcuate nucleus (28, 328, 430, 1286).

Expression of neuropeptide Y in the mediobasal hy-
pothalamus is increased during lactation (330, 331, 1107,
1400, 1646). The appearance of immunoreactive neu-
ropeptide Y in TIDA neurons is especially striking since
these neurons do not normally express detectable levels
of neuropeptide Y in other physiological situations. The
appearance of neuropeptide Y positive terminals around
the loops of the hypothalamo-hypophysial portal capillar-
ies shows a remarkable plasticity since these terminals
largely disappear within 24 h followed by the cessation of
nursing (330, 331, 1857).

Neuropeptide Y stimulates prolactin secretion in cul-
tured pituitary cells obtained from random cycling female
rats (302). On the other hand, in primary cultures of
anterior pituitary cells obtained from lactating or ovari-
ectomized estradiol-treated animals, neuropeptide Y
causes a concentration-dependent decrease in prolactin
secretion (1857). The inhibitory effect of the peptide is
additive to the inhibition of prolactin secretion caused by
dopamine (1857). Withdrawal of the peptide from the
culture medium results in a quick rebound of prolactin
secretion, similar to that of dopamine withdrawal (1857).
In addition, neuropeptide Y, alone or in combination with
dopamine, decreases TRH-induced prolactin release
(1857); the presence of neuropeptide Y markedly aug-
ments the inhibitory effect of dopamine (1857).

The presence of neuropeptide Y in TIDA neurons and
in periportal nerve terminals in the median eminence
indicates that the peptide can affect prolactin secretion
either by modulating dopamine release presynaptically
and/or by affecting dopamine’s action in the pituitary
(1857). It has been hypothesized that a possible function
of the neuropeptide Y expressed in TIDA neurons during
lactation is to amplify the inhibitory action of dopamine
on prolactin secretion (1857).

In the male rat, intracerebroventricular administra-
tion of neuropeptide Y decreases prolactin secretion (5692,
1466). The central inhibitory effect of neuropeptide Y on
prolactin secretion is probably mediated by stimulating
TIDA neurons, since the activity of these dopaminergic
neurons increases upon neuropeptide Y administration
(692). Moreover, neuroanatomical observations at the
electron microscopic level reveal synaptic connections
between TH-positive cells and neuropeptide Y-positive
fibers (714). These observations undoubtedly reveal the
potential of neuropeptide Y as a regulator of prolactin
secretion and suggest a central site of action. It is still
uncertain, however, whether endogenous neuropeptide Y
significantly contributes to the tonic inhibition of prolac-
tin secretion in male rats since previous reports on the
effects of centrally administered neuropeptide Y anti-
serum on prolactin secretion are conflicting (618, 1465,
1466). Neuropeptide Y antiserum increases plasma pro-
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lactin level only in intact males, suggesting that the cen-
tral inhibitory action of neuropeptide Y probably depends
on sex steroids (618).

It has been noted that stimulation of central neu-
ropeptide Y Y2 receptors by injection of neuropeptide Y
or a Y2 agonist in the lateral ventricle increases prolactin
gene expression in the pituitary (604). The mechanism by
which central neuropeptide Y affects prolactin mRNA
levels in the anterior pituitary gland and its physiological
significance is unclear.

Expression of neuropeptide Y in the mediobasal hy-
pothalamus increases dramatically during lactation (330,
331, 1107, 1646). However, although the elevated neu-
ropeptide Y expression is a lactation-dependent phenom-
enon, it does not require high plasma prolactin levels
(1400). Therefore, it appears that neuropeptide Y in the
hypothalamus does not mediate prolactin feedback per
se. The increased expression of neuropeptide Y gene in
the arcuate nucleus is likely related to feeding behavior
and/or adaptive changes in energy balance necessary to
sustain lactation (1107, 1379).

In the medial basal hypothalamus, neuropeptide Y Y2
receptors are upregulated by estradiol and decreased by
progesterone cotreatment in ovariectomized rats (1381).
However, the functional significance of these changes in
regulating prolactin secretion during the estrous cycle is
unclear.

On the basis of ligand binding and pharmacological
studies, at least two neuropeptide Y receptors might exist
in the CNS (897). The Y1 receptor is coupled to phospho-
lipase C and inositol phosphate metabolism and enhances
intracellular Ca>* mobilization upon activation, while the
Y2 receptor decreases Ca®" influx resulting in an inhibi-
tion of the target cell’s secretory activity (528, 1849). Both
Y1 and Y2 couple negatively to adenylyl cyclase (897). All
of the effects of neuropeptide Y on these signaling events
can be prevented by pertussis toxin, which indicates
G./G; mediation (528, 897). Moreover, it seems that neu-
ropeptide Y, similar to the effects of dopamine, reduces
Ca®" entry through voltage-dependent Ca®" channels in
lactotrophs (1857). In cultured lactotrophs obtained from
lactating animals, neuropeptide Y reduces the intracellu-
lar Ca®" elevation caused by TRH (1857). The latter effect
of neuropeptide Y is more robust on the sustained phase
of TRH-induced intracellular Ca®>* concentration eleva-
tion, which is consistent with the notion that neuropep-
tide Y mainly affects Ca®" influx (1857). It is interesting to
note that a similar cooperativity between LHRH and neu-
ropeptide Y on gonadotrophs has been reported earlier
(374). In the latter case, however, neuropeptide Y aug-
ments stimulatory signaling elicited by LHRH, and it was
suggested that neuropeptide Y facilitates Ca®* influx
through voltage-sensitive Ca®* channels (374). Although
the precise mechanisms for these actions of neuropeptide
Y have not been elucidated, it is intriguing that the same
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peptide receptor might be coupled to different intracellu-
lar signaling pathways exerting biologically opposing cel-
lular events.

K) SOMATOSTATIN. The presence of growth hormone
release-inhibiting factor in the hypothalamus was first
discovered in 1968 (982), and the active tetradecapeptide,
named somatostatin, was later purified by Guillemin et al.
(211). It became apparent from the beginning that soma-
tostatin not only inhibits GH, but the secretion of prolac-
tin, TSH, and ACTH as well (1394, 1460, 1783). Two bio-
logically active forms of somatostatin (somatostatin-14
and somatostatin-28) have been identified as the product
of the same gene (519, 1434, 1568). The molecular biology
and physiology of somatostatin have been reviewed
(1251, 1390, 1863).

Somatostatin immunoreactive neurons are wide-
spread throughout the CNS and peripheral nervous sys-
tem (556). In the hypothalamus, somatostatin neurons
that project to the external zone of the median eminence
are mainly concentrated in the medial preoptic and the
anterior periventricular area, as well as in the paraven-
tricular nucleus (724). These “neuroendocrine” soma-
tostatin neurons receive abundant afferent connections
from galanin, neurotensin, neuropeptide Y, GABA, sero-
tonin, enkephalin, substance P, TRH, and catecholamin-
ergic systems (3, 157, 318, 724, 895).

Somatostatin inhibits basal as well as TRH- or VIP-
induced prolactin secretion in vitro in prolactin-produc-
ing cell lines or hemipituitaries (461, 462, 466, 509, 733,
941). Although somatostatin and its analogs are capable
of inhibiting prolactin secretion in vivo, somatostatin in-
hibits prolactin secretion with lower efficacy compared
with its effect on growth hormone secretion (1394). How-
ever, the concentration of immunoreactive somatostatin
in the portal blood is high enough to be biologically
relevant to the regulation of prolactin secretion (3, 319).
Injection of somatostatin antisera intravenously causes a
marked increase in plasma prolactin concentration, indi-
cating that endogenous somatostatin may indeed exert an
inhibitory influence over prolactin secretion in vivo (507).

Similar to many other prolactin secretagogues, estra-
diol can profoundly alter the responsiveness of lac-
totrophs to somatostatin (942, 994). Indeed, although so-
matostatin causes a robust inhibition of prolactin
secretion in male or ovariectomized female estradiol-
primed rats, its effect in normal or pimozide-treated ani-
mals is much less robust (359, 651, 913, 1018). Interest-
ingly, although long-term exposure to estradiol gradually
diminishes the dopaminergic control of prolactin secre-
tion (1001) and eventually leads to an uncoupling of in-
hibitory signaling to D, dopamine receptors (1454), the
sensitivity of lactotrophs to somatostatin increases with
estradiol treatment (1001). The significance of these ob-
servations as related to the mechanism of estradiol-in-
duced tumorigenesis of lactotrophs is not yet clear. In
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anterior pituitary cells and tumorous MtTW-10 cells of
pituitary origin, somatostatin inhibits estradiol-induced
prolactin, galanin, and growth hormone secretion and
synthesis (824, 826). Galanin is characterized as a potent
auto- and paracrine PRF (258, 825, 1888). Thus somatosta-
tin might affect prolactin secretion, in part, by inhibiting
galanin release/synthesis from lactotrophs. Because the
synthesis and release of galanin in the lactotroph is
strongly estradiol dependent (258, 803), the suggested
galanin-mediated mechanism for somatostatin’s action on
prolactin secretion would be consistent with its sensitiv-
ity to estradiol (359, 651, 1018).

The pharmacological characterization of somatosta-
tin receptors in lactotrophs, somatotrophs, and thyro-
trophs indicates a single class of somatostatin binding
sites in these cell types (515). Interestingly, in prolactin-
producing tumorous cells, specific somatostatin binding
is always found, although usually in lower density than in
growth hormone-producing cells, whereas nonprolactin
producing chromophobe adenomas are devoid of '*I-
somatostatin binding sites (507). The fact that normal
lactotrophs as well as tumorous cells of “mammosoma-
totroph” origin are capable of expressing somatostatin
receptors emphasizes the potential of somatostatin and
its analogs in regulating lactotroph function under varying
physiological or pathological conditions.

The advances made in the molecular biology and
pharmacology of the somatostatin receptor family have
been reviewed recently (1251, 1393, 1463). Molecular
cloning has revealed six somatostatin receptors (SST1-5,
two splice-variants for SST2) encoded by five separate
genes, all belonging to the G protein-coupled receptor
superfamily (1391, 1392, 1463). All somatostatin receptor
subtypes (proteins and/or mRNA) have been detected in
the hypothalamus and the pituitary (390, 463, 671, 1190,
1195, 1334, 1375, 1744). The SST2A and SST5 receptors
are rather abundant in the anterior lobe of the pituitary
gland (390, 1190, 1334). Lactotrophs as well as tumorous
cells in the mammosomatotroph lineage preferentially
(but not exclusively) express the SST5 receptor subtype
(671, 1190, 1195, 1613). Although previous pharmacologi-
cal studies indicate that more than one somatostatin re-
ceptor exists (1394, 1462), such multiplicity of SST recep-
tors revealed by molecular cloning is somewhat
unexpected (625, 1391, 1462, 1463). With respect to ante-
rior pituitary hormone secretion, the functional signifi-
cance of the molecular diversity of somatostatin recep-
tors has not been clarified as yet. Recent developments in
the synthesis of potent subtype-selective peptidomimetics
(both agonists and antagonists) will undoubtedly help the
functional characterization of the different somatostatin
receptor subtypes (1494, 1904).

Somatostatin receptor expression in the pituitary
gland is sensitive to ovarian and adrenal steroid hor-
mones. For instance, estradiol upregulates SST2 receptor
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gene expression in rat prolactinoma cells (1829, 1830).
Short-term exposure to glucocorticoids upregulates,
whereas a prolonged exposure downregulates the expres-
sion of somatostatin receptors in pituitary cells (1573), as
well as in a rat prolactinoma-derived cell line (1829, 1892).
These observations indicate that responsiveness of lac-
totrophs and somatotrophs to somatostatin is regulated
through the expression of somatostatin receptors, and
such regulation by these steroids is consistent with their
effects in vivo on somatostatin-induced modulation of
prolactin and growth hormone secretion.

The widespread distribution of somatostatin and so-
matostatin receptors throughout the entire CNS indicates
clearly that somatostatin subserves a role as neurotrans-
mitter as well (656, 1462). The possibility that somatosta-
tin might affect prolactin secretion through affecting the
TIDA system has been suggested earlier (898). With re-
spect to prolactin secretion, it is noteworthy that estradi-
ol-induced regulation of somatostatin receptors in the
brain is restricted to the arcuate nucleus of the hypothal-
amus. In ovariectomized rats, estradiol treatment signifi-
cantly increases the number of '*I-somatostatin binding
sites in the ventrolateral part of the arcuate nucleus
(1645). In the same region, somatostatin binding is higher
in proestrus compared with other stages of the estrous
cycle (1645). The expression of somatostatin receptors,
SST2 receptor subtype in particular, is upregulated by
estradiol (135, 1588). However, to what extent these
changes in the expression of somatostatin receptors
within the arcuate nucleus reflect on the regulation of
prolactin secretion is not clear.

The affinity of '*’I-somatostatin binding and the in
vitro potency of different somatostatin analogs on aden-
ylyl cyclase and intracellular free Ca®* are well corre-
lated, suggesting a possible causal relationship between
biological effects of somatostatin and the inhibition of
adenylyl cyclase and/or intracellular free CaZ" (941,
1715). However, the inhibition of hormone secretion by
somatostatin cannot be explained solely through adenylyl
cyclase and/or Ca®" entry inhibition. Thus it has been
suggested that another mechanism of transduction may
be involved in the inhibitory actions of somatostatin on
prolactin, growth hormone, and TSH secretion (941,
1715).

L) caLcitoNiN. Calcitonin, a polypeptide originally de-
scribed as a plasma Ca®’-lowering hormone (360) se-
creted by the parafollicular cells (C cells) in the thyroid
gland (570), has been shown to inhibit prolactin secretion
(reviewed in Ref. 1631). Calcitonin and calcitonin gene-
related peptide (CGRP) are apparently encoded by the
same gene (853), but the processing pathway is tissue
specific; whereas the parathyroid gland is the major
source of calcitonin, in the CNS the CGRP is the dominant
form (33, 570, 1502).

Calcitonin-like immunoreactivity is present in the
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CNS and in lactotrophs of the anterior lobe of the pitu-
itary gland (1225). Calcitonin is most abundant in the
inner portion of the anterior lobe (1595). In accordance
with the latter observation, salmon calcitonin antiserum
causes more robust prolactin secretion when applied to
lactotrophs obtained from the inner region of the anterior
lobe (1595).

Calcitonin peptides are capable of inhibiting basal as
well as TRH-stimulated prolactin secretion by acting di-
rectly on dispersed pituitary cells in culture (514, 880,
1225, 1593-1595, 1597, 1631, 1894). The effects of calcito-
nin-like peptides on prolactin secretion seem specific
since these peptides do not influence GH, LH, FSH, and
TSH secretion (880, 1593, 1597, 1894). The inhibitory ef-
fect of calcitonin on prolactin secretion is dependent on
the thyroid status of the animal, since in pituitaries ob-
tained from thyroidectomized animals, calcitonin stimu-
lates prolactin secretion (1905). Endogenous calcitonin
release by pituitary cells in culture is sufficient to inhibit
prolactin secretion since anti-salmon calcitonin anti-
serum increases prolactin secretion (1595, 1660) even in
the presence of dopamine (1595). Cell immunoblot assay
and RIA reveal that anterior pituitary cells are capable of
releasing calcitonin-like peptides (1660), indicating a
paracrine regulation of prolactin secretion by these pep-
tides (discussed further in sect. viBIAVII). These data
suggest that calcitonin is a physiologically important in-
hibitor of prolactin secretion and likely acts in concert
with dopamine and other PIF to provide a tonic inhibition
of prolactin secretion (1595).

Several investigations have concluded that calcito-
nin-like peptides are effective in inhibiting prolactin se-
cretion when administered in vivo (495, 531). That calci-
tonin is a physiological regulator of prolactin secretion
has gained further support by recent evidence showing
that passive immunization with salmon calcitonin anti-
serum increases plasma prolactin concentration within 30
min of antiserum administration (1595). Calcitonin-like
peptides lower prolactin secretion induced by stress in
prepubertal female rats or by the suckling stimulus in
lactating animals (495, 1348). Intracerebroventricular ad-
ministration of a calcitonin analog lowers basal as well as
stress- or morphine-induced prolactin secretion (1633).
These data suggest that, in addition to its direct effects in
the pituitary, calcitonin has central inhibitory activity on
prolactin secretion as well, probably through enhance-
ment of hypothalamic inhibitory pathways controlling
prolactin secretion (1308, 1633). It has been suggested
that calcitonin has a potential role as neuromodulator in
the CNS (1679) and it may decrease prolactin secretion by
activating the TIDA system (341). Taken together, it
seems very likely that endogenous calcitonin plays a role
in tonic inhibition of prolactin secretion (1595). However,
in spite of the numerous observations concerning the
effects of calcitonin on prolactin secretion in a wide



1562

variety of in vivo situations (119, 370-372, 495, 531, 1347,
1348, 1633, 1905), the precise physiological role of calci-
tonin in the regulation of prolactin secretion is not yet
understood.

The signaling mechanism coupled to calcitonin re-
ceptors in lactotrophs is not clear. However, interactions
of calcitonin with well-known prolactin secretagogues
provide some clue (880, 1593, 1597, 1894). The inhibition
of TRH-induced prolactin secretion by calcitonin seems
rather selective, since prolactin release induced by other
Ca®"-mobilizing secretagogues such as ANG II or neuro-
tensin, or by a Ca>* ionophore A23187 or maitotoxin (an
activator of voltage-dependent Ca®" channels), is unaf-
fected by calcitonin (880, 1593, 1597, 1894). Likewise,
prolactin secretion elicited by adenylyl cyclase-activating
secretagogue VIP or forskolin (a direct activator of ad-
enylyl cyclase) was unaffected by the presence of calci-
tonin (880, 1593, 1597, 1894). It seems likely that calcito-
nin receptor activation on lactotrophs interferes with the
phospholipase C-related signaling cascade, including
Ca®" mobilization from intracellular stores, decrease in
inositol phosphate production, as well as a subsequent
reduction in cytosolic free Ca?* concentration and ara-
chidonate liberation (514, 880, 1661). Extended exposure
to calcitonin inhibits phosphatidylinositol turnover
(1660), although in some cases the effect of calcitonin on
phosphatidylinositol hydrolysis seems bimodal, consist-
ing of a quick increase followed by a sustained inhibition
(1660, 1661).

M) BOMBESIN-LIKE PEPTIDES (GASTRIN-RELEASING PEPTIDE,
NEUROMEDINS B AND ¢). The first representatives of this
peptide family, bombesin and ranatensin, were isolated
from amphibian skin (516, 517), followed by their mam-
malian counterparts, gastrin-releasing peptide (GRP), and
neuromedins B and C (1199, 1852). These peptides are
localized to hypothalamic neurons (928, 1377, 1671, 1792).
Given intracerebroventricularly, they are potent inhibi-
tors of basal as well as stimulated prolactin secretion in
rats (929).

GRP-positive perikarya are found in the parvicellular
part of the paraventricular nucleus and in the periven-
tricular nucleus in close proximity of the third ventricle
(928, 1377, 1792). Beaded terminals and fibers are found
in the suprachiasmatic nucleus as well as the area dorsal
and lateral to the suprachiasmatic nucleus in the region of
the periventricular nucleus, while the median eminence
displays no immunoreactivity for GRP (928, 1377, 1792).
The differential and region specific expression of the two
bombesin-like peptides neuromedin B and GRP (1288,
1377, 1844) and their corresponding receptor subtypes
(126, 1217, 1671, 1845) suggests that these structurally
closely related peptides may have distinct physiological
functions in the CNS.

Bombesin and its analogs are capable of stimulating
prolactin secretion from GH,C, cells in vitro (1876). More-
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over, the bombesin-like peptide neuromedin C stimulates
prolactin secretion from anterior pituitary cell aggregates
cultured in serum-free medium supplemented with thy-
roxine and dexamethasone (797, 799). The presence of
estradiol in the culture medium augments this effect of
neuromedin C that can be blocked by specific bombesin
receptor antagonists (798, 799). These observations
clearly suggest that bombesin-like peptides can exert a
direct stimulatory influence on prolactin secretion at the
pituitary level. The influence of these peptides on pitu-
itary hormone secretion seems to be specific for lac-
totrophs since the effectiveness of these peptides on the
rest of the anterior pituitary hormones is rather unre-
markable (797, 799, 1876).

The lactotroph has the intrinsic capacity to synthe-
size GRP/bombesin-like peptides (798). However, the par-
ticipation of GRP-like peptides in local control of hor-
mone release is suspect since a potent receptor
antagonist of GRP does not affect basal, stimulated (by
VIP, TRH, or ANG II), or suppressed (by dopamine) pro-
lactin secretion from perifused microaggregates of pitu-
itary cells (798).

When given intravenously, bombesin-like peptides in-
crease prolactin secretion in anesthetized steroid-primed
rats (700, 1483). However, contrary to the effects of sys-
temic administration, centrally administered bombesin
has a very potent and long-lasting inhibitory effect on
prolactin release induced by acute stress in conscious
male rats (1705). Similarly, synthetic porcine GRP, given
intracerebroventricularly, suppresses basal as well as opi-
ate-stimulated prolactin secretion, whereas it does not
suppress domperidone-induced elevation of prolactin se-
cretion (1153). Bombesin injected into the third ventricle
of ovariectomized conscious rats suppresses prolactin
levels in the plasma, concomitant with an increase in
tyrosine hydroxylase activity in the hypothalamus (95). In
addition, bombesin suppresses basal as well as PGE,-
induced prolactin secretion when given intracerebroven-
tricularly to rats under urethane anesthesia (912). More-
over, intracerebroventricular bombesin lowers basal
prolactin levels in conscious male rats and prevents mor-
phine-, bremazocine-, and stress-induced prolactin secre-
tion. The same dose of bombesin has no effect on prolac-
tin secretion following o-MpT or haloperidol treatment.
These results indicate that bombesin acts as an inhibitor
of prolactin release, not on the lactotroph itself, but rather
by an increase of inhibitory dopaminergic tone (257, 929).
Indeed, GRP stimulates spontaneous release of dopamine
from perifused rat hypothalamic fragments in vitro (886).

It seems that bombesin/GRP peptides exert an over-
all inhibitory influence over prolactin secretion since cen-
tral administration of bombesin also prevents the estra-
diol-induced afternoon prolactin surge. Applied in a
smaller dose, bombesin delays the surge but does not
prevent it from occurring (1099). The effect of bombesin
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seems specific since it can be prevented by administering
bombesin together with a specific bombesin antagonist.
Interestingly, temporarily lowering endogenous dopami-
nergic tone dominating the lactotrophs by a single injec-
tion of sulpiride at 1400 h reinstates the prolactin surge
(1099). The latter observation indicates that bombesin
suppresses the estradiol-induced prolactin surge through
activating the hypothalamic neuroendocrine dopaminer-
gic systems.

Bombesin not only blocks the prolactin surge but
also the circadian changes in TIDA activity (1100). In
suprachiasmatic nuclei-lesioned animals, these rhythms
are absent and bombesin treatment is without effect.
Microinjection of bombesin into the suprachiasmatic nu-
clei blocks the diurnal changes in TIDA activity and pro-
lactin secretion, whereas injection into the arcuate nu-
cleus does not disturb the rhythmic changes in TIDA and
prolactin secretion. It has been suggested that bombesin
may act on the rhythm generation center, the suprachias-
matic nucleus, to disrupt TIDA neuron activity associated
with the prolactin surge (1100).

Bombesin given intraventricularly decreases prolac-
tin secretion both in male and female rats, but only in
males was this effect of bombesin associated with an
increase of TIDA activity (1757). The loss of gonadal
hormones after ovariectomy renders TIDA neurons re-
sponsive to the stimulatory effects of bombesin, whereas
immunoneutralization of prolactin does not affect the
ability of bombesin to alter the activity of TIDA neurons
(1757). Intracerebroventricular injection of bombesin
causes a dose- and time-related increase in the activity of
TIDA and PHDA neurons and a corresponding decrease in
prolactin and «-MSH concentrations in the plasma (1122).
Bombesin fails to alter the activity of dopaminergic neu-
rons terminating in the striatum, nucleus accumbens, or
in the neural lobe of the pituitary gland (THDA). Because
equimolar doses of bombesin and GRP cause similar ac-
tivation of the TIDA and PHDA systems (1122), it seems
likely that a “GRP-preferring” receptor subtype (126,
1671) mediates these effects. A highly specific antiserum
against GRP injected into the third ventricle to immuno-
neutralize endogenous GRP-like peptides in the hypotha-
lamic area increases prolactin secretion (928), underlin-
ing the physiological significance of the endogenous GRP-
related peptides in regulating prolactin secretion.

The effects of these peptides on prolactin secretion
in humans seem less impressive. For instance, bombesin
given intravenously (5 ng-kg™ min~* for 2.5 h) does not
alter basal but attenuates TRH-induced prolactin secre-
tion in healthy male volunteers (1426). One group (1234)
found no effect of bombesin infusion (200-600
pmol-kg *h 1) on pituitary hormone secretion, while the
biological activity of the bombesin used in this study was
confirmed by observing a brisk increase in serum gastrin
concentrations and in gastric acid secretion (1234). On
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the other hand, it has been reported that bombesin (10
ng-kg ™ "min ! for 60 min) elicited prolactin release in six
of eight subjects (1425). One study found GRP (0.12
pmol-kg min~! for 30 min and 1.5 pmol-kg ':min~* for
an additional 30 min) ineffective on prolactin secretion
while it increased ACTH and cortisol in the serum (959).

Application of microaggregate culture in combina-
tion with GRP/bombesin receptor autoradiography and
immunocytochemistry for pituitary hormones reveals that
the bombesin receptor is expressed mainly in lactotrophs
(796). Without estradiol supplement, the proportion of
bombesin receptor expressing cells are very low, usually
<1%. The presence of 1 nM estradiol in the tissue culture
medium robustly increases the number of cells express-
ing bombesin receptors while dexamethasone has an op-
posite effect. It seems, therefore, that bombesin receptor
expression in the pituitary is estradiol inducible, whereas
glucocorticoids have a suppressive effect (796). These
data are in good agreement with the effects of estradiol
and dexamethasone on the responsiveness of the lac-
totroph to GRP/bombesin-like peptides observed in a sim-
ilar experimental settings (798, 799).

Specific, high-affinity bombesin binding sites have
been characterized in a pituitary cell line (GH,C,;) using
['*I-Tyr!|bombesin (1877). Scatchard analysis reveals
one class of bombesin binding sites, and the estimated
value of the equilibrium dissociation constant [(K,) ~1.2
nM] agrees closely with the half-maximal concentration
(EDgy ~0.5 nM) for bombesin stimulation of prolactin
release. Subsequent studies have shown that mammalian
bombesin-like peptides exert their effects via different
receptors (126, 1671, 1845).

Both bombesin and TRH stimulate prolactin secre-
tion from GH,C, cells (EDs, ~2 nM, E, ., ~100 nM). No
additional stimulation of prolactin secretion can be seen
when bombesin is combined with TRH, while the effects
of bombesin and VIP are additive (177). The additive
nature of the interaction with VIP confirms a previous
suggestion that bombesin-like peptides do not act through
adenylyl cyclase stimulation (461). Both bombesin and
TRH elicit rapid inositol trisphosphate formation (within
2-4 s). Bombesin causes the same biphasic changes in
membrane potential as TRH, and both peptides cause a
rapid and sustained increase in intracellular free Ca**
(177, 461, 462, 1766). These results suggest that bombesin
stimulates prolactin secretion via an immediate formation
of inositol trisphosphate similar to the action of TRH (177,
467, 1703).

Taken together, although a great many pharmacolog-
ical studies suggest that the GRP/bombesin family of pep-
tides exert effects on prolactin secretion, various uncer-
tainties/inconsistencies among the data cited above
postpone their assignment as physiologically relevant
controllers of prolactin secretion.

N) CHOLECYSTOKININ. The cholecystokinin (CCK) and
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gastrin family of peptides, originally described as gastro-
intestinal hormones (368), share a common COOH-termi-
nal pentapeptide amide sequence (1691). The COOH-ter-
minal tetrapeptide represents the bioactive core of these
molecules (1860). Although gastrin is present in very
small concentrations, CCK (in its tyrosine-sulfated form)
is predominant in the CNS (1457, 1796, 1797), where it
likely functions as a neurotransmitter (366, 1795).

Immunoreactive CCK and its COOH-terminal oc-
tapeptide (CCK-8) are found in the CNS of various mam-
malian species (449, 1252, 1692, 1693, 1797). The obser-
vation that CCK and dopamine colocalize in the
mesencephalic dopaminergic system spurred further in-
terest in this peptide family (13, 367, 778-780, 1402).
CCK:-like peptides have been found in hypothalamic re-
gions relevant to the regulation of pituitary function (43,
137, 138, 204, 300, 431, 879, 947, 949, 1128, 1193, 1367).
The pharmacology and molecular structure of the CCK
receptor family have been reviewed (1860). In the hypo-
thalamus and in most areas in the CNS, the vast majority
of the receptors are CCKjy type, although CCK, is also
present and the two receptors often colocalize (1860). A
large body of pharmacological and physiological studies
support the notion that gastrin/CCK-like peptides play a
role in the regulation of anterior pituitary function, includ-
ing prolactin secretion.

Early experiments did not suggest a significant bio-
logical effect for CCK-like peptides at the pituitary level,
since no effect on prolactin secretion was detected fol-
lowing an incubation of various concentrations of CCK-8
in vitro with hemipituitaries obtained from ovariecto-
mized rats (1822). It was later found that CCK-8 and to a
lesser extent CCK-33 can stimulate pituitary prolactin
secretion in vitro (1109). Because the effective concentra-
tion range of CCK-8 in these experiments was rather high
(10~ to 10~° M), it seems unlikely that CCK is present in
the portal blood in a biologically effective concentration
(1109). It has been reported that CCK-8 elicits a dose-
dependent stimulation of prolactin secretion from dis-
persed rat anterior pituitary cells (1150). The effective
concentration range of CCK-8 in these experiments seems
physiologically more relevant (10~ to 10~7 M) (1150).
With the assumption that the sensitivities of lactotrophs
in culture and in vivo are comparable, the latter observa-
tion indicates that CCK-8 may, after all, act directly on
anterior pituitary cells to stimulate prolactin release.

The less than dramatic effects observed in vitro
(1109, 1822) correlate well with the relative ineffective-
ness of CCK-like peptides to alter prolactin secretion after
peripheral administration. For instance, intravenous in-
jection of CCK-8 does not affect basal prolactin secretion
of freely moving male rats, even in a dose as high as 5
pg/rat (1714). In addition, systemic injection of the non-
selective agonists of CCK-8 (caerulein), CCKy selective
agonists (CCK-4 and pentagastrin), CCK, antagonist
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(devazepide), or CCKy antagonist (1-365,260) does not
affect prolactin secretion in male rats (1116). In one early
experiment, however, intravenous injection of CCK-8 to
female rats causes a short-lived dose-dependent increase
in prolactin secretion (1822).

The remarkable difference in terms of efficiency
when a CCK-like peptide is given intracerebroventricu-
larly (912, 1822) instead of intravenously indicates clearly
that these peptides likely affect prolactin secretion at
hypothalamic sites, presumably by altering the activity of
prolactin-releasing and/or inhibiting hormone-producing
neurons. Indeed, central administration of CCK-8 in-
creases prolactin secretion in freely moving male rats, an
effect prevented by the specific CCK antagonists proglu-
mide or benzotript (1714). The enhancement of prolactin
secretion by dopamine D, antagonists (haloperidol,
sulpiride, domperidone) is not altered by central CCK
administration. However, when endogenous dopamine is
depleted by a-MpT or reserpine, CCK-8 increases plasma
prolactin levels. In addition, the decrease of prolactin
secretion induced by the dopamine agonist apomorphine
can be antagonized by centrally administered CCK. These
data indicate that the central effect of CCK-8 is mediated,
at least in part, by modulating the output of the neuroen-
docrine dopaminergic neurons of the hypothalamus
(1714). In addition, the elevation in prolactin secretion by
CCK-8 can be prevented by intracerebroventricularly ad-
ministered VIP antiserum (1714). Therefore, one possible
route through which CCK-8 increases prolactin secretion
in male rats is by stimulating VIP through a central CCK
receptor (1714).

Interestingly, when injected into the third ventricle of
the brain of conscious ovariectomized rats, 4 or 400 ng
CCK-8 does not change prolactin secretion, whereas an
intermediate dose (40 ng) of CCK-8 increases plasma
prolactin levels within 15 min (1822). Injection of a spe-
cific CCK antagonist, proglumide, into the third ventricle
of intact male rats causes a robust decrease of prolactin
secretion, indicating a tonic central action of CCK on
prolactin secretion (1821). On the other hand, ovariecto-
mized female rats respond to central CCK antagonism
with stimulation of prolactin secretion (1821). Taken to-
gether, the fact that CCK antagonism alters prolactin
concentrations in both sexes underlines the physiological
importance of endogenous CCK-like peptides in the reg-
ulation of prolactin secretion. However, an explanation
for the observed sexual differences is not yet available
(1821). It is noteworthy that both CCK, and CCKy recep-
tors are present in the hypothalamus and are likely in-
volved in the regulation of anterior pituitary hormone
secretion in vivo (1410). Because opposite biological ef-
fects can be mediated by CCK, and CCKy receptors
(1115), some of the ambiguity surrounding the effects of
CCK on prolactin secretion in female rats may be related
to the fact that the sulfated CCK-8 applied in these exper-
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iments is not a subtype selective agonist on these recep-
tors.

Anesthesia, not surprisingly, interferes with the cen-
tral effects of CCK-like peptides. For instance, intraven-
tricularly administered CCK-8 to urethane-anesthetized
rats suppresses prolactin secretion (912), whereas in con-
scious animals CCK-8 is stimulatory (see above).

Electrophysiological data strongly support the view
that CCK is an important neurotransmitter in regulating
neuroendocrine function of the hypothalamus. For in-
stance, when extracellular single-unit activity is recorded
in vitro using brain tissue slice preparation, CCK-8 elicits
a robust activation in the majority of neurons within the
area of the arcuate nucleus (1049, 1371). CCK-8 is found
even more effective in stimulating neuronal activity than
glutamate, a well-recognized stimulatory neurotransmit-
ter in the CNS. Estrogen replacement to ovariectomized
animals significantly increases the proportion of cells
which respond to CCK by excitation (1371). The dorso-
medial portion of the arcuate nucleus, where most of the
TIDA neurons reside, was included, although not specifi-
cally targeted in these experiments. Nevertheless, it is
difficult to reconcile the overall excitatory effect of CCK
on arcuate neurons (1049, 1371) with its stimulatory ef-
fect on prolactin secretion in vivo (1822).

Taken together, CCK-like peptides, acting as neuro-
transmitters or neuromodulators in the hypothalamus,
play an important role in the regulation of prolactin se-
cretion. The most likely locus of the action of these
peptides is the arcuate nucleus-median eminence region.
The latter conclusion is supported by the observation that
local injections of gastrin or CCK-8 in the preoptic region
do not change prolactin concentration in the serum (940),
while these peptides stimulate prolactin secretion when
injected into the third ventricle (see above).

Human pituitary tumors often contain CCK-like im-
munoreactivities, although the role of CCK peptides
and/or their receptors in pituitary tumorigenesis is not
known (1459). In healthy males and females, continuous
intravenous injection of pentagastrin does not affect pro-
lactin secretion (32). Caerulein (an amphibian peptide,
which mimics the biological actions of CCK) does not
change basal prolactin secretion but accentuates TRH-
induced prolactin release in normal men (1563). Similarly,
CCK-8 administered to normal men has no effect on basal
prolactin secretion (1285). Intravenous infusion of CCK-8
(140 ng/kg) stimulates prolactin secretion in a dose-de-
pendent fashion (264).

The intracellular signaling pathways coupled to CCK
receptors have not yet been fully elucidated (182). All
CCK receptors cloned to date apparently belong to the G
protein-coupled receptor superfamily (1860). However,
the G protein(s) mediating the ionic effects of CCK are
not pertussis toxin sensitive (182), indicating that the
response to CCK does not involve a G; or a G,. The direct
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prolactin-releasing effect of CCK is dependent on extra-
cellular Ca>* (1150). In the CNS, the predominant action
of CCK is excitatory because it causes depolarization of
the neuronal membrane that leads to an increased firing
rate. These effects of CCK result from an inhibition of K™
conductance and increasing Ca>* influx through a calci-
um-dependent nonselective monovalent cation channel
(182).

0) ATRIAL NATRIURETIC PEPTIDES. Atrial natriuretic pep-
tide was first isolated from mammalian heart tissue (900).
Three members of the atrial natriuretic peptide family
have been isolated and designated A-type (ANP), B-type
(BNP), and C-type (CNP) natriuretic peptide (1697, 1698).
The biologically active forms consist of 28, 32, and 22
amino acids, and all contain a 17-amino acid ring struc-
ture formed by a disulfide bond between two cysteine
residues. The ring structure seems essential for their bi-
ological activities (1151).

Atrial natriuretic peptide positive cell bodies are de-
tected in the rostral hypothalamus (mostly in the preoptic
and periventricular nuclei, median preoptic nucleus, an-
terior wall of the third ventricle, organum vasculosum
laminae terminalis) that project to the median eminence
and the neural lobe of the pituitary (713). Atrial natri-
uretic peptide is detected in the hypophysial portal blood
of both male and female rats in a concentration higher
than that of the peripheral plasma (1604). The distribution
of atrial natriuretic peptide throughout the hypothalamus
and the pituitary suggests that both neuromodulator and
neuroendocrine effects of these peptides should be con-
sidered.

Although most of the data suggest hypothalamic tar-
gets for atrial natriuretic peptides in regulating prolactin
secretion (see below), a direct hypophysial component of
atrial natriuretic peptide’s action cannot be excluded,
since in some experiments atrial natriuretic peptide is
capable of inhibiting prolactin secretion in vitro (482).

Atrial natriuretic peptide administered into the third
ventricle decreases basal as well as stress-induced pro-
lactin secretion in male rats, indicating that atrial natri-
uretic peptide can act centrally to alter neuronal activities
responsible for the hypothalamic control of prolactin se-
cretion (1531, 1533). These effects of atrial natriuretic
peptide are sensitive to dopamine antagonism; therefore,
it seems conceivable that atrial natriuretic peptide exerts
its effects through stimulation of hypothalamic dopami-
nergic neurons (566, 1534). The influence of endogenous
atrial natriuretic peptides on prolactin secretion is less
well understood because the results obtained by passive
immunization with an antiserum to atrial natriuretic pep-
tides are somewhat equivocal (5671). Much of the ambigu-
ity could result from the fact that the two major forms of
atrial natriuretic peptide in the CNS have opposing neu-
roendocrine effects by affecting different subsets of neu-
rons (1536). Selective lesions of CNP and atrial natriuretic
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peptide targets in the hypothalamus reveal that the two
peptides do not act directly on TIDA neurons (1536).

Estradiol injection to ovariectomized animals 24 h
before the blood collection resulted in a significant de-
crease of atrial natriuretic peptide concentrations in the
portal plasma (1604). Because the direct pituitary effect
of atrial natriuretic peptide is inhibitory to prolactin se-
cretion, the latter finding is consistent with the overall
stimulatory influence of estradiol on prolactin secretion.
However, this finding is contradicted by the fact that the
concentration of atrial natriuretic peptide in the portal
plasma remains unchanged throughout the day of
proestrus, indicating that atrial natriuretic peptide may
not play a role in the spontaneous prolactin surge (1604).

It seems likely that the major role of the hypotha-
lamic atrial natriuretic peptides is the modulation of
stress-induced hormone secretion from the anterior pitu-
itary (5671). A complementary function of prolactin and
atrial natriuretic peptide in maintaining water and ion
(especially sodium) homeostasis has been suggested (713,
1685). However, the physiological relevance of atrial na-
triuretic peptide-mediated regulation of prolactin secre-
tion is not yet clear.

The signal transduction mechanism for atrial natri-
uretic peptide in the brain and the pituitary has recently
been reviewed (713). Although the field is still controver-
sial, it seems that activation of guanylyl cyclase is the
major signaling event elicited by atrial natriuretic peptide-
like peptides (305, 321, 1345). The increased cGMP was
utilized to detect atrial natriuretic peptide-responsive
cells within the brain. Cells within the paraventricular
nuclei of the hypothalamus are among the responsive
cellular elements in the brain (for references, see Ref.
713).

P) ENDOTHELINS. Vasoactive peptides produced by the
endothelial cells were discovered based on their strong
and long-lasting vasoconstrictor activity (591, 624, 756,
1510). Three peptides were later identified as products of
three different genes and named endothelin (ET)-1, ET-2,
and ET-3 (843, 1901). It has been thought that the physi-
ological role of these peptides is to serve as paracrine
regulatory signals emanating from the endothelium to
affect vascular smooth muscle tone (839, 1141, 1142). It is
now quite apparent that these peptides have a wide array
of physiological functions (814, 1291, 1790) and can mod-
ulate secretory functions in many endocrine tissues (1140,
1291, 1689).

The distribution of ET receptors in the CNS has been
investigated, first with in situ hybridization (787) and
more recently with immunocytochemical methods (990).
In the hypothalamus and especially in the pituitary, ET, is
the predominant receptor subtype, while the ETy recep-
tors are most abundant in the cerebellum (787). Recent
studies with an ET, receptor specific antibody revealed a
strikingly matching topography of ET, receptor immuno-
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reactivity with catecholaminergic neurons throughout the
brain (990, 1895). For instance, in the hypothalamus, the
arcuate and the periventricular nuclei, the parvicellular
regions of the paraventricular nucleus, and the zona in-
certa contain strongly immunopositive cell bodies for ET
receptors (990, 1895). Although this finding is suggestive
of a specific functional relationship between endothelin
and catecholaminergic systems in the brain, it needs to be
reinvestigated with double-label techniques to establish
the proposed synaptic connections and demonstrate co-
localization of ET, receptor and tyrosine hydroxylase in
the same neuron unequivocally.

There is ample evidence that endothelin-like peptides
are involved in the regulation of prolactin secretion (485,
902-905, 1544). Endothelins act directly on the lactotroph
to decrease (902, 903, 15644) or increase (485, 906) prolac-
tin secretion dependent on the physiological environ-
ment. These data suggest an important role for endothe-
lins in the intrinsic regulatory mechanisms of the pituitary
gland (905, 1577), which are discussed in section viiB1alV.

Recent observations, however, indicate that endothe-
lin-like peptides may also subserve a role as neuromodu-
lators or neurotransmitters. For instance, immunocyto-
chemical studies indicate that ET-1-containing axon
collaterals of the hypothalamic magnocellular neurons
can reach the area of dopaminergic cell bodies in the
periventricular and arcuate nuclei (1895). Because high
levels of ET, receptor immunoreactivity have been de-
tected in these dopaminergic neurons (990), it seems
conceivable that endothelins affect prolactin secretion by
influencing the activity of the hypothalamic neuroendo-
crine dopaminergic neurons.

The hypothalamic magnocellular neurons in the su-
praoptic and paraventricular nuclei were the first neural
system where endothelin-like immunoreactivity was de-
tected in the brain (1915). The physiological role of en-
dothelins in the hypothalamo-posterior pituitary system is
not well understood. It is interesting to note, however,
that physiological conditions exacting profound demand
on magnocellular neurons (e.g., water deprivation, lacta-
tion) robustly decrease the endothelin-like immunoreac-
tivity in these neurons (1915). On the other hand, expres-
sion of ET-1 increases significantly in the supraoptic and
paraventricular nuclei from early to late gestation (794).
These, admittedly scarce, observations suggest an inhibi-
tory function for endothelins in regulating oxytocin
and/or vasopressin secretion and, perhaps indirectly, pro-
lactin secretion.

The hypothalamic magnocellular system has been
considered as a potential source of endothelin-like pep-
tides for the anterior lobe of the pituitary gland (1690,
1915). It is conceivable that these neurons provide endo-
thelins to the anterior lobe through their axon collaterals
to the median eminence, in a way similar to oxytocin and
vasopressin (50, 620, 782). Alternatively, endothelins re-
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leased at the posterior lobe of the pituitary gland can
reach the anterior lobe through the short portal system.
Because endothelins likely influence the blood flow
through the portal vascularizations in both cases, until
recently, there was limited enthusiasm to consider endo-
thelins as target cell-specific neurohumoral signaling mol-
ecules (905). However, recent observations of the magno-
cellular neurons reveal that part of the ET-1 precursor is
not converted to the biologically active mature peptide
but is packed in vesicles, transported to the axon termi-
nals, and presumably released by regulated exocytosis
(1520) as big ET-1 (1895). Because big ET-1 is practically
inactive, it can theoretically reach the anterior lobe
through the long portal vessels without affecting the
blood flow of the portal vasculature. Assuming that the
target cells express endothelin convertase enzyme and
endothelin receptors, the big ET-1 will be converted to
bioactive ET-1 on the cell surface. The locally generated
mature ET-1 will then affect the cell and possibly its
neighbors as well (1895). It is noteworthy that, in vitro, a
non-cell-permeable endothelin convertase enzyme inhibi-
tory peptide (1233) increases prolactin secretion (905),
thus indicating that signaling through big ET-1 might be
feasible for lactotrophs.

Taken together, the anatomical distribution of ET-
like peptides and precursors, as well as endothelin recep-
tors in the hypothalamus and the pituitary, indicate that
endothelins of hypothalamic origin may act as neuro-
transmitter/neuromodulator or neurohormone to regulate
prolactin secretion. However, none of these modes of
action for endothelin has yet been proven experimentally.

Q) “NEW” PROLACTIN-RELEASING PEPTIDES. Although many
of the peptides described above are all “candidates” for
the physiological prolactin-releasing hormone of hypotha-
lamic origin, none has definitively been assigned that role.
A novel approach has recently been taken to describe
another prolactin-releasing peptide of neural origin. With
the use of the PCR, a seven-transmembrane-domain re-
ceptor, designated hGR3, was isolated from the human
pituitary gland and identified as an “orphan receptor” on
the basis that an endogenous ligand had not been identi-
fied (765). Chinese hamster ovary cells transfected with
hGR3 receptor were used to isolate the endogenous li-
gand from crude bovine hypothalamic extract. The detec-
tion of the endogenous ligand relied on the fact that in
these cells, activation of hGR3 receptors evokes the re-
lease of arachidonic acid, one of the signal transduction
cascades known to control pituitary prolactin secretion
from pituitary cells. Three bioactive peptides were subse-
quently isolated from the extract and purified by standard
HPLC methodology (765). The cDNA encoding two of the
peptide sequences of 20 and 31 amino acids were isolated
from bovine, human, and rat brain and found to be highly
conserved. The prolactin-releasing peptide mRNA for
each is most abundant in the medulla oblongata (589,
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1197), whereas only moderate amounts are found in the
hypothalamus and the anterior lobe of the pituitary gland
(589, 1147).

The synthetic peptides (1319) stimulate release of
prolactin from a rat pituitary cell line as well as normal
pituitary cells from lactating rats but does not affect the
secretion of any other pituitary hormones (765). How-
ever, compared with equimolar quantities of some of the
other well-described prolactin-releasing peptides, the 31-
amino acid peptide is the only substance that potently
stimulates prolactin secretion from cells obtained from
lactating rats (765). Unfortunately, the claims of bioactiv-
ity as an authentic prolactin-releasing peptide have not
been fully confirmed. When anterior pituitary cells ob-
tained from male rats are exposed to the peptides, neither
the 20- or 31-amino acid peptide stimulates prolactin se-
cretion, whereas only the highest doses of either peptide
stimulate prolactin secretion from pituitary cells obtained
from random cycling female rats (1541). On the other
hand, when administered intravenously to male rats or
female rats during proestrus, estrus, or metestrus, the
31-amino acid peptide stimulates prolactin secretion in a
dose-dependent manner during each stage of the estrous
cycle (most effective during proestrus) as well as in male
rats (1148). However, the effective dose is 10-fold greater
in male than female rats. Such data suggest that the
steroid milieu may determine the response of the lac-
totroph to these newly discovered peptides.

Immunocytochemical approaches reveal prolactin-
releasing peptide-positive fibers in the paraventricular
and supraoptic nuclei of the hypothalamus and in the
neural lobe of the pituitary gland, whereas cell bodies are
found in the dorsomedial and ventromedial nuclei of the
hypothalamus (835, 1139). Within the paraventricular nu-
cleus, double-label immunocytochemistry reveals synap-
tic contact with oxytocin-positive neurons. However, no
prolactin-releasing peptide-positive cells or fibers are
found in the external layer of the median eminence (835,
1139, 1897), the site at which one would expect to find
neurohumoral terminals. On the other hand, immunore-
active processes in the hypothalamus often make contact
with ependymal cells lining the third ventricle (835). In
other parts of the brain, prolactin-releasing peptide-posi-
tive neurons (310, 835) and its message (1197) are noted
mainly in two areas of the caudal medulla: ventrolateral
reticular formation and commissural organ of the nucleus
of the solitary tract, corresponding to the Al and A2
noradrenergic areas. The distribution of the peptides in
the CNS and intestine as well as the receptor throughout
the CNS, anterior pituitary gland, and adrenal medulla has
suggested an additional role for prolactin-releasing pep-
tides in the central feedback control of neuroendocrine
and autonomic homeostasis (1497)

The identification of immunopositive fibers in the
neural lobe suggests that the peptide may arrive from the
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neural lobe to the anterior lobe through short portal ves-
sels connecting the two lobes. However, establishment of
the physiological significance of these prolactin-releasing
peptides awaits their identification in hypothalamo-hypo-
physial portal blood to be considered a neurohormone or
in the anterior pituitary gland to be considered a para-
crine or autocrine factor.

4. Amino acids

The group of amino acids that includes glutamate,
aspartate, glycine, and GABA, and perhaps homocysteic
acid and taurine, constitute the most widespread neuro-
transmitter family in the mammalian CNS (446). Because
the vast majority of the excitatory neurotransmission is
glutamatergic, and likewise, most of the inhibitory neuro-
transmission is GABA mediated, the focus is on these two
amino acid neurotransmitters in this review.

A) AMINO ACID RECEPTORS. Most of the amino acid recep-
tors belong to the ligand-gated ion channel superfamily of
proteins (so-called ionotropic receptors), whereas others
are members of the G protein-coupled receptor superfam-
ily (metabotropic receptors). Although the cloned sub-
units of the ligand-gated ion channels are usually capable
of forming a functional homomeric channel, these chan-
nels usually lack several features of the native channel
complexes. Indeed, the native amino acid receptors are
heteromeric structures, made up of several different sub-
units and auxiliary subunits. The differences in receptor
composition likely confer varying modulatory capacity on
the channel (446).

Ionotropic glutamate receptors consist of three sub-
classes: a-amino-3-hydroxy-5-methyl-4-isoxasolepropi-
onate (AMPA), kainate, and N-methyl-p-aspartate
(NMDA) receptors. These receptors respond to glutamate
or glutamate analogs by activating a cation channel that is
part of the receptor complex (for references, see Ref.
1409). Through different combinations of subunits and/or
by alternative splicing of their mRNA, a large variety of
these channels can exist. The glutamate receptor subunits
are large (~100,000 Da) compared with other ligand-gated
ion channels such as GABA,, glycine, or AChy receptors.
The functional AMPA and kainate receptors are perme-
able to monovalent cations (Na* and K) only, and they
usually mediate rapid excitatory events. The NMDA re-
ceptor comprises a glutamate binding site, a strychnine-
insensitive glycine binding site, a polyamine binding site,
and a phencyclidine (MK-801) binding site. It seems that
glycine is a necessary coagonist for NMDA receptors.
Unlike the AMPA and kainate receptors, the ion channel
of NMDA receptors is also permeable to calcium, and this
permeability has been linked to many of the long-term
effects of NMDA receptors (1409).

Metabotropic glutamate receptors are members of
the G protein-coupled receptor superfamily with a char-
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acteristic seven transmembrane topology. Several
metabotropic glutamate receptors have been identified
with differing amino acid homologies, agonist prefer-
ences, and signal transduction pathways. The mGluR1
and mGIuR5 receptors are linked to the phosphoinositol
signal transduction pathway (sensitive to quisqualate),
while mGIluR2 and mGIluR3 receptors are linked to the
inhibition of cAMP cascade (the best agonist is gluta-
mate); mGluR4, mGIluR6, and mGluR7 are also linked to
the inhibition of the cAMP cascade, but prefer L-(+)-2-
amino-4-phosphonobutyrate (1-AP4) as an agonist (re-
viewed by Petralia and Wenthold, Ref. 1409).

As predicted (446), the surprisingly large variety of
molecular forms of GABA, glutamate, and other amino
acid receptors revealed by molecular cloning approaches
present a daunting challenge for physiologists to establish
the functional implications of these amino acid receptors.

B) EXCITATORY AMINO ACIDS. The excitatory amino acid
(EAA) neurotransmission in the neuroendocrine hypo-
thalamus has recently been reviewed (1793). On the basis
of a great many morphological and electrophysiological
(1791) studies, glutamate mediates most if not all fast
excitatory inputs to the neurons in the arcuate nucleus
(1793). Application of receptor autoradiography, in situ
hybridization, and immunocytochemistry have provided
detailed information concerning the distribution of bind-
ing sites, mRNA, and channel proteins for the large variety
of glutamate receptors (for references, see Ref. 1409).
Compared with the rest of the CNS, excitatory amino acid
receptors in the hypothalamus are present in light to
moderate density (1409). Most of the kainate receptors
are in the arcuate nucleus-median eminence (1160, 1782),
while NMDA binding sites were found in the preoptic area
(1125). It is important to this review that several subtypes
of AMPA| kainate, and NMDA receptors are detectable in
all three lobes of the pituitary gland (1409). The latter
observation indicates that, in addition to the CNS, gluta-
mate receptors may play a direct role at the pituitary level
(1409).

It is generally assumed that EAA exert their effects
on prolactin secretion by acting at hypothalamic targets
(208, 209). It has been reported, however, that glutamate
increases prolactin secretion when applied in monolayer
culture of dispersed pituitary cells of adult female rats
(1074). Pharmacological characterization indicates that
the receptor involved in the direct effect of glutamate on
lactotrophs likely belongs to the NMDA subclass of the
glutamate receptors (1074).

In neonatal rats, many neurons in the medial basal
hypothalamus and the retina are vulnerable to systemi-
cally administered monosodium glutamate (MSG). Conse-
quently, neonatally administered MSG causes severe dis-
turbances in the regulation of anterior pituitary functions
of the adult animal (21, 144, 350, 652, 1408, 1461, 1493,
1735, 1774). It is interesting to note that acute systemic
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administration of MSG to the adult animal elicits a rapid
and transient release of prolactin (1735). The latter result
indicates that components of the regulatory circuitry of
prolactin secretion not protected by the blood-brain bar-
rier are sensitive to a glutamatergic stimulus (1735). Ex-
citatory amino acids acting at the NMDA receptor likely
play a role in modulating the activity of neuronal systems
that regulate the release of both PRF and PIF (91). The
effects of excitatory amino acids on prolactin secretion
are largely determined by the relative activity of these two
regulatory systems. Indeed, in a physiological situation
with PRF dominance over PIF (lactation), EAA or EAA
agonist administration decreases prolactin secretion (91)
through activation of PIF (TIDA). In the case of male rats,
where inhibition is the predominant central influence on
prolactin secretion, EAA increase prolactin secretion pre-
sumably through activating PRF secretion into hypophy-
sial portal blood (91).

The effects of excitatory amino acids on prolactin
secretion change with the reproductive state of the animal
and the site of administration (208, 209). As with CNS
administration, the predominant effects of these agonists
are through stimulation of PRF and/or inhibitory interneu-
rons affecting TIDA/PHDA. On the other hand, in the case
of systemic administration, these agonists can reach only
the arcuate nucleus-median eminence region, which in-
cludes the TIDA/PHDA neurons (208, 209). Central admin-
istration of agonists to kainate or NMDA receptors stim-
ulates prolactin release in both cycling and lactating
animals (1). Peripheral administration of NMDA agonists
stimulates prolactin secretion, whereas kainate has no
effect (1). In contrast, systemic injection of either agonist
to lactating animals inhibits prolactin secretion, indicat-
ing that lactation qualitatively alters the responsiveness of
the neural circuitry involved in the regulation of prolactin
secretion (1). Interestingly, changes in responsiveness to
EAA of those neuronal circuits regulating either prolactin
or LH secretion are opposite in nature (1). Nevertheless,
the effects of lactation (and the suckling stimulus per se)
at the level of the pituitary gland should also be consid-
ered, since lactation fundamentally alters the responsive-
ness of the lactotroph to both releasing and inhibiting
factors, possibly by remodeling signaling mechanisms
coupled to the receptors of these factors (1048).

Hyperprolactinemia (induced by pituitary grafts un-
der the kidney capsule) significantly reduces glutamate
concentration in the mediocortical amygdala (1117). It
seems likely, however, that this effect of chronically ele-
vated prolactin concentration in the plasma is related to
the behavioral changes associated with hyperprolactine-
mia rather than the regulation of pituitary prolactin secre-
tion per se (1117).

C) INHIBITORY AMINO ACIDS (GABA). It has been reported
that GABA is partially responsible for the nondopaminer-
gic PIF activity within hypothalamic extracts (1569).
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GABA neurons have been visualized by immunohisto-
chemistry using an antibody against glutamate decarbox-
ylase (GAD), an enzyme of GABA biosynthesis (1718,
1827). Cells of the anterior lobe contain specific receptors
for GABA (664). Therefore, it is not surprising that GABA
directly inhibits the release of prolactin (511, 1441, 1569).
However, the effective molar concentration of GABA is
~100 times higher than that of dopamine tested in an in
vitro superfusion system (1155). GABA concentrations in
hypophysial stalk blood have been equivocally reported
to be either higher than (1206) or lower than (1247) that
of peripheral plasma.

Initial observations concerning the effects of GABA
on prolactin secretion detected both stimulatory and in-
hibitory influences (1357, 1386). Although in the mid
1970s evidence in favor of dopamine as the major PIF had
already been strong (1299), efforts to isolate a nondopa-
minergic (potentially peptidergic) PIF from the hypothal-
amus continued. One of these endeavors pointed toward
GABA as a potential hypothalamic PIF (1569) and pro-
vided impetus for further studies on the role of GABA in
regulating pituitary function (292, 511, 1441).

The early results concerning the involvement of
GABA in the regulation of prolactin secretion were re-
viewed by Cocchi et al. (347), Racagni et al. (1440), Muller
et al. (1250), and later by Apud et al. (562). On the basis of
biochemical and immunocytochemical studies, it has
been concluded that there are two different GABAergic
systems affecting pituitary function: one is intrinsic to the
mediobasal hypothalamus (tuberoinfundibular GABAer-
gic system), whereas the other is extrinsic with cell bod-
ies located outside the hypothalamus that project to the
mediobasal hypothalamus and establish synaptic contacts
with aminergic and peptidergic neurons involved in endo-
crine functions (52, 1173, 1546, 1570, 1716, 1718, 1719). On
the basis of numerous biochemical and immunocyto-
chemical studies (562, 54, 56, 1442), it seems that GABA is
not synthesized in the anterior pituitary but rather origi-
nates from the CNS and is transported to the anterior lobe
of the pituitary gland via the hypophysial portal system.
Indeed, immunochemical and electron microscopic stud-
ies detect an abundant GAD-positive (GABAergic) nerve
plexus in the external zone of the median eminence (1716,
1827) and nerve endings adjacent to the perivascular
space of the fenestrated portal capillaries (1719). In addi-
tion, morphological evidence suggests a strong GABAer-
gic innervation of the paraventricular and supraoptic hy-
pothalamic nuclei (1174, 1737), areas thought to be
important in PRF-mediated effects on prolactin secretion
(13083).

The GABAergic neurons in the medial basal hypo-
thalamus receive multiple intrahypothalamic and extrahy-
pothalamic inputs. A direct stimulation of hypothalamic
GABAergic neurons by serotonin (12) and substance P
(11) has been demonstrated. Because these latter trans-
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mitters have a stimulatory influence on prolactin secre-
tion, it seems reasonable to assume that the GABAergic
neurons stimulated by serotonin and substance P func-
tion as inhibitory interneurons affecting TIDA activity
(1049, 1173, 1717).

The turnover of dopamine in the medial preoptic/
anterior hypothalamic area, nucleus accumbens, anterior
mediobasal hypothalamus is decreased, whereas dopa-
mine turnover in the mediocortical amygdala is increased
by the GABA, agonist muscimol (588). The effect of
muscimol on the mediobasal hypothalamic dopaminergic
neurons could be related to the elevated prolactin level
caused by the same treatment (588).

In dispersed anterior pituitary cells in a cell-perifu-
sion apparatus, GABA and the GABA agonist muscimol
dose-dependently inhibit the release of prolactin (679).
GABA antagonists (bicuculline and picrotoxin) block the
action of GABA or muscimol, indicating the presence of
specific GABA, receptors on pituitary lactotrophs (679).

The relatively low potency and efficacy of GABA and
GABA mimetics on prolactin secretion in vitro makes it
difficult to assess the true regulatory and/or clinical po-
tential of GABA at the pituitary level (54, 55, 1168). Al-
though both the brain and anterior pituitary GABA recep-
tors have similar affinity for GABA in Scatchard analysis,
in displacement studies pituitary GABA receptors show
significantly less affinity for the GABA, agonist muscimol
or the antagonist bicuculline (54). In addition, in male rat
anterior pituitary slices, 10°® M GABA is effective in
decreasing prolactin release only in the presence of eth-
anolamine-O-sulfate, a potent GABA-transaminase
(GABA-T) inhibitor (564). The low affinity of GABA mimet-
ics and the rapid degradation of GABA in vitro could, at
least in part, explain the relatively weak direct effects of
these compounds on lactotrophs. It is also conceivable
that there are two distinct GABA receptors and/or signal-
ing pathways that elicit opposing biological effects on
lactotrophs. Indeed, the GABA, receptor agonist musci-
mol has a biphasic effect on prolactin secretion in vitro,
since at low concentrations it stimulates whereas at high
concentrations it inhibits prolactin secretion (38, 39). In
addition to its effects on secretion, GABA (through
GABA, receptors) inhibits prolactin gene expression by
acting directly on lactotrophs (1072, 1073).

The GABA receptors in the anterior pituitary have
been thoroughly characterized (for references, see Ref.
52). From functional studies, it seems likely that the pre-
dominant receptor in lactotrophs is GABA,. Indeed, the
ability of GABA, agonists to displace [’H]GABA binding
from anterior pituitary membranes correlates well with
their potency to inhibit prolactin secretion under stimu-
lated conditions (e.g., hyperprolactinemia induced by do-
pamine antagonists). It has been recognized that GABA,
receptors in the CNS are part of a multimolecular com-
plex consisting of a chloride ionophore and its associated
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regulatory protein, a bicuculline-sensitive GABA binding
site, a benzodiazepine recognition site, and a membrane-
bound protein that can alter GABA and benzodiazepine
sensitivity (363). GABA, receptor in the anterior pituitary
and the CNS present similar affinity constants when eval-
uated by Scatchard analysis (54). However, in displace-
ment studies, muscimol (a GABA, agonist) and bicucul-
line (a GABA, antagonist) show 10-100 times less affinity
in the anterior pituitary (54). Interestingly, benzodiaz-
epines and barbiturates potentiate the stimulatory effect
of muscimol on prolactin secretion, whereas the inhibi-
tory phase is not affected by these drugs (39). These
results indicate that the effect of GABA on lactotrophs is
complex and that at least one component of the GABA
receptor-mediated effects is modulated by benzodiaz-
epines and barbiturates, similar to that described in the
CNS (39, 661, 1826).

Although the majority of the studies have described
GABA, receptor-mediated regulation of prolactin secre-
tion at the pituitary level, several observations indicate
that prolactin secretion can also be modulated through
GABAg receptors. The GABA agonist baclofen (3-p-chlo-
rophenyl-y-aminobutyric acid) decreases basal and TRH-
stimulated prolactin secretion in a concentration-depen-
dent manner when applied in monolayer culture of
dispersed anterior pituitary cells (1091).

In many cases, the effects of systematically adminis-
tered GABA agonists on basal prolactin secretion in vivo
are less than impressive (55, 394-396, 459, 1168). It
should be considered, however, that under basal condi-
tion, prolactin secretion is tonically suppressed by dopa-
mine of hypothalamic origin; therefore, a further decrease
in prolactin secretion by any putative PIF is likely to be
modest. However, after relieving the dopaminergic inhi-
bition of prolactin secretion by haloperidol (D, dopamine
antagonist), GABA, agonists are capable of significantly
decreasing prolactin secretion (55, 397). In addition, the
stimulation of prolactin release by histamine is prevented,
and the proestrous prolactin surge is significantly blunted
by systemic treatment with GABA mimetics or GABA-T
inhibitors (459, 1632). It has been reported that in male
rats, the GABAy agonist baclofen blocks prolactin secre-
tion induced by a variety of stressful conditions (430a,
1092). In addition, the same agonist also decreases the
elevation of prolactin elicited by serotonin or a suckling
stimulus. On the other hand, baclofen is ineffective in
changing prolactin secretion following the blockade of
dopaminergic neurotransmission by haloperidol or a-MpT
(1092). It has therefore been suggested that baclofen in-
hibits prolactin secretion through a PRF component of
the neuroendocrine responses evoked by stress or suck-
ling (1092, 1881).

Centrally administered GABA or the GABA, agonist
muscimol (5 nmol) in most cases reduces hypothalamic
dopamine turnover while resulting in increased prolactin
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concentration in the plasma (588, 998, 1249, 1356, 1378).
However, in some studies carried out in ovariectomized
female rats, GABA implanted directly into the arcuate
nucleus fails to increase prolactin secretion (1318). Be-
cause the peripheral blood contains a significant amount
of GABA, the question arose whether the GABA that
affects the pituitary lactotrophs is of central or peripheral
origin. Intracerebroventricular injection of anesthetized
male rats with ethanolamine-O-sulfate, the specific inhib-
itor of GABA catabolism, causes a marked reduction in
serum prolactin level and a three- to fourfold rise in the
concentration of GABA in the pituitary stalk and in the
hypothalamus (56). This demonstrates that GABA in the
pituitary stalk plasma is derived from the CNS and that an
abrupt increase in the concentration of GABA in hypo-
physial portal blood is associated with a suppression of
prolactin secretion (56, 691). The effects of ethanolamine-
O-sulfate on the hypothalamic and anterior pituitary
GABA concentration and prolactin secretion occur much
earlier than the increase of GABA concentration in the
peripheral plasma, indicating that circulating GABA does
not play a functional role in the control of prolactin
secretion (56). It should be mentioned, however, that the
physiological importance of GABA in the hypophysial
portal blood has been subsequently challenged by others
(1247, 1619). Nevertheless, the physiological role of
GABA in regulating prolactin secretion is further sup-
ported by a close temporal relation between daily fluctu-
ations in the activity of the tuberoinfundibular GABAergic
system and the circadian prolactin surges (293). It has
been suggested that changes in GABAergic activity might
occur as a delayed response to prolactin circadian surges
(293).

Treatment of ovariectomized rats with aminooxyace-
tic acid, a GABA-T inhibitor which elevates GABA levels
in the CNS, leads to an increase in hypothalamic TH
activity and a concomitant decrease in plasma prolactin
concentration (96). Muscimol inhibits [*H]dopamine re-
lease from the median eminence in vitro in a bicuculline-
sensitive, strychnine-insensitive manner, indicating a pre-
synaptic inhibition of dopamine release by GABA,
receptors (37). When single-unit activity of neurons in the
dorsomedial/ventrolateral part of the arcuate nucleus was
examined, over 90% of these cells were inhibited by ba-
clofen, a GABAj agonist (1049), suggesting a robust, func-
tional inhibitory GABAergic input to the TIDA neurons.
Studies in male rats indicate that although acute pharma-
cological activation of GABAy receptors inhibits TIDA
neurons (1881), these neurons are under tonic inhibition
mediated by GABA, but not GABAy receptors (1881).
Taken together, these observations provide further evi-
dence that the major central effect of GABA on prolactin
secretion is exerted by inhibiting the neuroendocrine do-
paminergic cells of the hypothalamus. Because the sensi-
tivity of these dopaminergic neurons to neural inputs is
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sexually differentiated, that would explain the previously
observed gender-related differences in the effects of
GABA on prolactin secretion observed in most (1106,
1210, 1846), but not all (1469), laboratories.

Lactating female rats represent a unique model for
the regulation of prolactin secretion (for references, see
Ref. 1303) where the hypothalamo-pituitary GABAergic
system seems to play an important role. Indeed, in lactat-
ing rats separated from their pups, reinstitution of suck-
ling results in an increase in GAD activity in the medial
basal hypothalamus and an increase in GABA content in
the anterior pituitary (1439).

It was suggested that the major function of GABAer-
gic neurons is negative-feedback regulation of prolactin
secretion to prevent an exaggerated prolactin output dur-
ing specific physiological situations (52, 477, 479). Indeed,
hyperprolactinemia elevates central GABAergic activity
as evidenced by an increase in hypothalamic GABA con-
centration and GAD activity (543). The effects of prolactin
on GABAergic activity in vivo are mainly indirect and
mediated by substance P and/or serotonin (11, 12, 1706).
Immunoneutralization of endogenous substance P pre-
vents prolactin-induced elevation of GABA in the anterior
pituitary and diminishes the depolarization-induced
GABA release from hypothalamic fragments in vitro (11).
There are some indications that prolactin can affect tu-
beroinfundibular GABAergic neurons directly, suggesting
that prolactin may influence its own secretion by stimu-
lating the release of hypothalamic GABA, both through an
increase of GABA synthesis and modification of GABA
reuptake (478, 480). An activation of GABAergic neurons
by prolactin in the hypothalamus is supported by the
observations that prolactin induces a rapid elevation in
intracellular free Ca®>" applied in primary cultures of rat
embryonic diencephalon (970).

Hyperprolactinemia induced by pituitary grafts under
the kidney capsule significantly reduces GABA concentra-
tion in the nucleus accumbens and the mediocortical
amygdala (1117). In the case of sustained hyperpro-
lactinemia, GABA turnover is reduced in the nucleus ac-
cumbens, whereas it is increased in the medial preoptic
area (1117). Thus GABAergic systems in these brain areas
might not be involved in regulating prolactin secretion per
se, but rather mediate the prolactin-induced suppression
of LH secretion, and/or elicit behavioral effects associated
with hyperprolactinemia (1117, 1118). Centrally adminis-
tered prolactin causes a delayed increase in GABAergic
activity in the hypothalamus and GABA concentration in
the hypophysial portal plasma (1071). This indicates that
the activity of the tuberoinfundibular GABAergic neurons
is regulated by circulating prolactin. Taken together,
these results strongly support the notion that prolactin is
capable of activating GABAergic neurons in the medio-
basal hypothalamus, constituting a short-loop feedback
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system by which prolactin regulates its own secretion
(1071).

The activity of hypothalamic GABAergic neurons as
well as the responsiveness of lactotrophs to GABA are
both strongly affected by gonadal steroids, especially es-
tradiol (53, 423, 441, 477, 859) and testosterone (669). The
existence of a large number of estradiol-receptive,
GABAergic neurons in the mediobasal hypothalamus
suggests that these neurons are targets for the positive
feedback action of estradiol on prolactin secretion (562).
Indeed, estrogens induce hyperprolactinemia concomi-
tantly with an increase of hypothalamic GAD and GABA-T
activity, as well as GABA concentration (441). A single
injection of estradiol does not change the activity of the
tuberoinfundibular GABA neurons as assessed by the rate
of GABA accumulation in the median eminence and the
anterior pituitary following the blockade of GABA catab-
olism by ethanolamine-O-sulfate (53). However, a single
injection of estradiol causes a shift of pituitary GABA
receptors from low- to high-affinity state and results in a
modest elevation of prolactin secretion. After the single
estradiol administration, the GABA agonist muscimol
causes a significant decrease in serum prolactin concen-
tration. Chronic estradiol administration reduces the ac-
tivity of the tuberoinfundibular GABA neurons and dras-
tically decreases the number of high-affinity GABA
receptors in the anterior pituitary, resulting in a robust
elevation in plasma prolactin concentration. Under these
circumstances, muscimol is ineffective in reducing
plasma prolactin concentration (53), suggesting that the
high-affinity population of anterior pituitary GABA recep-
tors (presumably expressed by the lactotrophs them-
selves) are involved in the mechanisms whereby GABA
inhibits prolactin release from the lactotrophs (563).

It is interesting to note that lactotrophs, as a result of
an extended exposure to estradiol, tend to lose their
responsiveness to inhibition by GABA (53), dopamine
(1024), or endothelins (Kanyicska and Freeman, unpub-
lished data) and became prone to malignant transforma-
tion. The precise molecular mechanisms underlying these
changes in responsiveness toward endogenous PIF
brought about by long-term exposure to estradiol is not
yet understood. It seems likely that downregulation of a
subset of G;/G, proteins is, at least in part, responsible for
the estradiol-induced changes in lactotrophs’ function
(198, 199, 308, 1178, 1397).

The effects of GABA through GABA, receptors are
thought to be initiated by an increase in conductance of
cell membrane to chloride ions through activation of chlo-
ride channels, which leads to a hyperpolarization of the
plasma membrane causing a decrease of Ca®" influx
through voltage-dependent Ca®>" channels. Patch-clamp
studies on rat and bovine lactotrophs indicate that the
main effect of GABA on lactotrophs is indeed mediated
through modulation of chloride ion conductance. The
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chloride channel involved in lactotrophs is voltage insen-
sitive and has a slope conductance of 20 pS (840, 841,
846). Muscimol mimics the effect of GABA on these chan-
nels, whereas baclofen is without effect, indicating a
GABA, receptor-mediated activation of these channels
(841). The GABAj receptors couple to potassium chan-
nels through GTP-binding proteins (41). Therefore,
GABAg receptor activation also leads to membrane hy-
perpolarization by increasing membrane conductance to
potassium ions. It has been suggested that GABA acting at
GABA, and GABAj receptors might originate from dis-
tinct sets of GABAergic neurons (1699).

Isolated lactotrophs in primary culture respond to
GABA or GABA mimetics with a transient increase of
cytosolic free Ca®>" and depolarization of the plasma
membrane (1082). The pharmacology of the latter effect
of GABA is consistent with GABA, receptor involvement
(1082). However, these effects of GABA seem inconsis-
tent with the inhibition of prolactin secretion.

The role for GABA as the most important fast inhib-
itory neurotransmitter in the brain is so well established
that the presence of the GABA-synthesizing enzyme GAD
in axon terminals is usually interpreted as a sure sign of
their inhibitory function (401, 1719). However, there are
several observations that can challenge the view that
GABA is always inhibitory (1362, 1403). For example,
during early postnatal life, GABA is markedly stimulatory
on GH and, to a lesser extent, on prolactin secretion when
applied directly on pituitary slices or dispersed pituitary
cells (6, 7). A similar observation has been made on
cultured hypothalamic neurons using electrophysiologi-
cal techniques (1847). Because GABA exerts its fast in-
hibitory action through activation of C1~ channels, it can
be assumed that in neonatal cells, the equilibrium poten-
tial for Cl™ is higher than the resting potential compared
with that of adult cells. Therefore, activation of C1~ chan-
nels will cause a depolarization of the cell membrane, an
observation which offers a plausible explanation for the
observed stimulation of Ca®>" influx by GABA or GABA,,
agonists on neonatal anterior pituitary cells (8, 9) and
neurons as well (311, 1847). More recently, it has been
reported that in mature neurons of the suprachiasmatic
nucleus of the hypothalamus, GABA acts as an excitatory
neurotransmitter during the day and as an inhibitory neu-
rotransmitter at night (1847). Taken together, although
the inhibitory function of GABA seems prevalent, under
certain conditions, activation of GABA, receptors can
result in stimulation of the target cell (355).

5. Gaseous transmitters

A) NITRIC OXIDE. Nitric oxide and, more recently, car-
bon monoxide have been shown to play a regulatory role
in neuroendocrine function and prolactin secretion (207).
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Among the gaseous neurotransmitters, nitric oxide is the
most widely described as controlling prolactin secretion.

Unlike the classical neurotransmitters, nitric oxide is
not stored in synaptic vesicles, is not limited to actions at
synapses, and does not interact with classical receptor
proteins, but it merely diffuses to nearby cells where it
modulates the function of postreceptor transduction cas-
cades (388, 389, 1083, 1213, 1254, 1293, 1576). Nitric oxide
is synthesized from r-arginine by nitric oxide synthase
(389, 1212). Although there are three major isoforms of
the enzyme identified to date, only one, neuronal nitric
oxide synthase (389), has been shown to play a role in
control of prolactin secretion (171, 207).

Because nitric oxide synthase is identical to neuronal
NADPH-diaphorase (387), cytochemical detection of
NADPH-diaphorase activity is frequently used to study the
distribution of nitric oxide synthase. Nitric oxide synthase
is found throughout the CNS (1922). In the rat, nitric
oxide synthase is present in the anterior pituitary (301),
throughout the hypothalamus (51, 172), and colocalized in
the locus coeruleus with norepinephrine (1893). Within
the hypothalamus, nitric oxide synthase (NADPH-diaph-
orase) activity is found in the paraventricular and su-
praoptic nuclei as well as in the lamina terminalis (51, 172,
213, 1767). Moderate activity is found in the medial pre-
optic nucleus, ventromedial nucleus, suprachiasmatic nu-
cleus, and median eminence (172).

Most of the studies examining a role for nitric oxide
on the hypothalamo-pituitary axis focus on LH secretion
(207). There is, however, some evidence that nitric oxide
may play a role in the control of prolactin secretion as
well. Administration of the nitric oxide synthase inhibitor
N®-nitro-L-arginine blocks the preovulatory release of pro-
lactin on proestrus (185). Likewise, administration of the
nitric oxide synthase inhibitor N“-nitro-L-arginine methyl
ester blocks the steroid-induced proestrus-like release of
prolactin in ovariectomized rats (185). Similar pharmaco-
logical blockade of nitric oxide synthase inhibits stress-
induced prolactin secretion in male rats, while potentiat-
ing morphine-induced increase of prolactin secretion
(1157). The latter results are somewhat unexpected, since
stress is thought to affect prolactin secretion via activa-
tion of the endogenous opioid system (239, 15640, 1634,
1808). It should be considered, however, that systemic
nitric oxide synthase inhibition likely affects several dif-
ferent pathways of neurotransmission mediating stress-
induced prolactin secretion in addition to endogenous
opioids. It is also conceivable that blocking of nitric oxide
synthesis has differential effects on morphine-induced
(activating a u-type opioid receptor) versus an endoge-
nous opioid-induced (perhaps activating a k-opioid recep-
tor) signaling (120).

Administration of the nitric oxide donor sodium ni-
troprusside to conscious male rats stimulates prolactin
secretion (641). All in all, these data indicate that nitric
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oxide plays a stimulatory role in the control of prolactin
secretion. In support of the former assertion, it has been
shown recently that sodium nitroprusside enhances pro-
lactin secretion by inhibiting tyrosine hydroxylase activity
in the median eminence of male rats (642), while admin-
istration of the nitric oxide synthase inhibitor N%-nitro-L-
arginine blocks the estrogen-induced increase of prolac-
tin secretion of ovariectomized rats by increasing
dopaminergic activity in the median eminence (1912).
These data, therefore, suggest that nitric oxide enhances
prolactin secretion by diminishing the activity of TIDA
neurons.

At the pituitary level, it seems that nitric oxide,
formed either by inducible or constitutive isoforms of
nitric oxide synthase (1803), may mediate the inhibitory
effect of cytokines on prolactin secretion (1163-1165).
Moreover, recent observations suggested that nitric oxide
inhibits prolactin secretion by activating guanylyl cyclase-
cGMP pathway and that this mechanism may be involved
in the GABA-induced inhibition of prolactin secretion
(481, 1161, 1162). In addition, incubation of male rat hemi-
pituitaries with sodium nitroprusside inhibits basal pro-
lactin secretion from these glands (482). Interestingly,
when applied on dispersed cells from male rat pituitary
glands, molsidomine, also a nitric oxide donor (1455),
stimulates basal prolactin secretion (238). The opposing
biological effects of nitric oxide observed in intact tissue
(482) and dispersed cell (238) preparations indicate that
cell-to-cell interactions may be important in determining
the effects of nitric oxide on prolactin secretion.

Taken together, these data indicate clearly that nitric
oxide plays a role in regulating prolactin secretion and
argue for a stimulatory role of nitric oxide within the
hypothalamus and a predominantly inhibitory effect
within the anterior pituitary gland.

B. Intrapituitary Regulation

In addition to the intricate regulation by the hypo-
thalamus and peripheral endocrine glands (reviewed in
sect. vii, A and (), the secretion of prolactin is also influ-
enced by local regulatory mechanisms (Fig. 3). It is now
widely accepted that the anterior lobe of the pituitary
gland has an intrinsic regulatory capacity through para-
crine and autocrine signals and that this type of regulation
can robustly affect lactotroph function (141, 1577). Be-
cause these local regulatory mechanisms of the pituitary
gland have recently been extensively reviewed (141,
1577-1579), we will provide only a brief survey of local
control of prolactin secretion and elaborate on recent
developments in this quickly expanding research area.

1. Anterior lobe

A) AUTOCRINE AND PARACRINE REGULATION: AN OVERVIEW.
Modes of local regulation of cellular functions, brought
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about by the secretion of diffusible molecules, can be
further divided based on the positional relation of the
participating cells. The regulation is called autocrine
when the secretory product of the cell regulates its own
secretion. In the case of paracrine communication, the
secretory product is transported by extracellular fluid and
exerts a biological effect on target cells at some distance.
Juxtacrine regulation is distinguished as a special case of
paracrine regulation when the source and target cells are
adjacent (juxtaposed) to each other. In addition, when the
lactotroph lies in intimate physical contact with another
anterior pituitary cell (which could be another lactotroph
as well), interactions are also possible without diffusible
messenger molecules, through gap junctions or extracel-
lular matrix proteins (164, 165, 424, 494). Because gap
junctions, to some extent, are permeable to intracellular
messengers such as Ca®", inositol trisphosphate, or
cAMP, it seems conceivable that a larger cell population
can be synchronized through these intercellular channels
(424). Tt appears that certain physiological situations pro-
mote the formation of reversible supracellular functional
units within the pituitary gland. For instance, it has been
reported that during lactation, lactotrophs and folliculo-
stellate cells are functionally coupled through gap junc-
tions (25, 26, 991, 1325). Although these types of commu-
nication between pituitary cells are extremely important
(especially from a pathophysiological point of view), a
detailed discussion is beyond the scope of this review. As
for the rest, we discuss cell-to-cell communications
through secreted diffusible messenger molecules pertain-
ing to prolactin secretion.

A direct contact occurring between lactotrophs and
other pituitary cell types in vivo (792, 1287, 1559) is
suggestive of juxtacrine regulation. However, such inti-
mate contact between cells does not seem to be required
for a more general paracrine regulation of prolactin se-
cretion (426). Paracrine interactions between different
pituitary cell types have been studied extensively by De-
nef et al. (426). Four different cell types have been estab-
lished as potential sources of paracrine signals affecting
lactotroph function: lactotrophs, gonadotrophs, cortico-
trophs, and folliculostellate cells (101, 425, 1577).

To consider a factor as a potential intrapituitary mes-
senger, proof of its local synthesis should be provided.
For peptides and proteins, demonstration of the presence
of immunoreactive material together with the respective
mRNA through the combined application of immunocyto-
chemical and in situ hybridization techniques is usually
accepted as proof of local synthesis. To establish small
nonpeptide molecules, such as acetylcholine, ATP or ni-
tric oxide as autocrine/paracrine agents could be more
complicated, and usually requires in vitro biochemical/
pharmacological experimentation in addition to the dem-
onstration of the synthesis enzyme(s) with immunocyto-
chemistry and in situ hybridization.
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Numerous peptides and other molecules have been
detected in the pituitary gland that are known to be
capable of modulating prolactin secretion (800), including
VIP (1275), galanin (596, 909), endothelin (452, 905), pro-
lactin (146, 890, 795), ANG II (426), substance P (89),
neurotensin (89, 630), GnRH (129, 1227), TRH (320), cor-
ticotrophin releasing factor (1228), growth hormone re-
leasing factor (1230), somatostatin (1229), gastrin (1458),
secretin (1335), enkephalins (950, 1771, 1870), vasopres-
sin (828), and acetylcholine (276, 276, 277, 1245, 1564,
1729). There is reason to believe that these messenger
molecules are synthesized locally rather than being taken
up after delivery through the portal circulation. Consider-
ing the high “spontaneous” rate of prolactin secretion, it
probably is significant that most of these peptides are
potent stimulators of prolactin secretion by acting di-
rectly on the lactotrophs (505, 512, 663, 734, 916, 918,
1046, 1154, 1754, 1820).

There is an ever-growing list of peptides with the
potential to act as local regulators of prolactin secretion.
However, establishing the precise mode of their actions in
a physiological context presents a significant challenge. It
is probably the most difficult to produce unambiguous
data in support of autocrine control of prolactin secre-
tion, since the presence of a biologically active molecule
and its mRNA in the lactotroph is not sufficient to verify
an autocrine role. Furthermore, demonstration of the bi-
ological effect of the putative autocrine agent by antago-
nism or immunoneutralization in most of the in vitro test
systems still would not support such a role convincingly,
since these methods are usually applied to a heteroge-
neous cell population in which a wide variety of cell-to-
cell interactions can occur. It seems that the best meth-
odological approach currently available to characterize
autocrine regulation is a carefully designed reverse hemo-
Iytic plaque assay (572, 576, 1211, 1300). With the use of
this method, the secretory activity of a single cell can be
assessed quantitatively without interference from neigh-
boring cells (190, 250, 573, 771, 862, 1030, 1090, 1275,
1282).

B) AUTOCRINE AND PARACRINE REGULATORS OF PROLACTIN SE-
creTioN. 1) VIP. VIP, a known hypothalamic stimulator of
prolactin release (4, 1528, 1609), is also synthesized
within the anterior lobe of the pituitary gland (87), more
specifically, by the lactotrophs (978). Specific VIP anti-
serum, but not other hyperimmune sera, decreases basal
secretion of prolactin in vitro, thus suggesting a paracrine
and/or autocrine stimulation of prolactin secretion by
locally produced VIP (715). An autocrine control of pro-
lactin secretion by VIP has been demonstrated unequivo-
cally using reverse hemolytic plaque assay (1275), by
showing that under conditions in which the pituitary cells
are plated at sufficiently low density to preclude paracrine
interactions, VIP antiserum or a VIP antagonist sup-
presses prolactin secretion (1275). These findings likely
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have far-reaching physiological and pathological rele-
vance, albeit none has been firmly established yet. For
instance, it seems conceivable that the peculiar ability of
lactotrophs to secrete prolactin vigorously without any
exogenous stimulant may be due to a positive feedback
exerted by its own VIP secretion. With some stretch of
imagination, it can be envisioned that VIP is a common
autocrine mediator of all other PRF or PIF. In support of
this notion, it has been found that the presence of a VIP
antagonist attenuates TRH-stimulated prolactin secretion
in vitro (113). Similarly, the stimulatory effects of seroto-
nin on prolactin secretion from cocultures of anterior
lobe and neurointermediate lobe cells can be blocked by
simultaneous incubation with a VIP antagonist (115). In
addition, it is also conceivable that dopamine may sup-
press prolactin secretion, at least in part, by antagonizing
the stimulatory effect of VIP through an activation of
inhibitory signaling or by inhibiting VIP secretion per se,
or both (114). Taken together, it appears that VIP has a
multifaceted role in the regulation of prolactin secretion
that may involve an autocrine, paracrine, or neuroendo-
crine route of delivery (1275).

II) Galanin. Several lines of evidence indicate that
galanin regulates prolactin secretion in a auto- and/or
paracrine manner. Galanin-like immunoreactivities have
been found in the anterior lobe of rat and human pituitary
glands (803, 808, 818, 819, 909, 1840), and it appears that
galanin is an estrogen-inducible secretory product of the
anterior lobe of the pituitary gland (909, 1339, 1843).
Specifically, galanin mRNA and peptide have been de-
tected in lactotrophs (823, 1339). Interestingly, galanin
secretion is also affected by prolactin secretagogues, in
accordance with galanin’s stimulatory effect on prolactin
secretion. For instance, galanin secretion from the rat
anterior lobe is inhibited by dopamine and somatostatin
and stimulated by TRH (824) and estrogen (726, 749, 823,
1843). Exogenous galanin stimulates basal as well as
TRH-induced prolactin release and lactotroph prolifera-
tion in rats (1360, 1889) and humans (628). Immunoneu-
tralization of endogenous galanin attenuates the preovu-
latory release of prolactin on proestrus (1081). Although
receptor autoradiography fails to detect specific galanin
binding sites in the pituitary (820), data obtained by the
more sensitive receptor-binding assay clearly indicate
that high-affinity galanin receptors are indeed present in
the anterior lobe (1890). Moreover, the recently cloned
galanin receptor, GALRZ2, has been shown to be expressed
in the anterior lobe of the pituitary gland (5632).

Recent experiments provided direct evidence for a
tonic autocrine and paracrine stimulatory action for in-
trapituitary galanin on prolactin secretion (1841, 1843,
1888). In an elegant study, Cai et al. (258) have shown that
in estrogen-treated Fischer 344 female rats, more than
90% of the galanin-expressing cells are lactotrophs. Fur-
thermore, with the use of the combination of reverse
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hemolytic plaque assay and in situ hybridization, it was
found that galanin-positive lactotrophs secrete signifi-
cantly greater amounts of prolactin compared with gala-
nin-negative lactotrophs. The autocrine function of pitu-
itary galanin has been further supported by in vitro
immunoneutralization experiments showing that galanin
antiserum significantly attenuates prolactin secretion
from galanin-positive cells (258).

II1) Endothelins. Endothelin-like peptides (espe-
cially ET-1) are potent inhibitors of prolactin release in
vitro (452, 902, 903, 1140, 1543, 1544, 1689, 1689). Because
endothelin-like peptides are present in all three lobes of
the pituitary gland (452, 905) as well as in spent media
from rat anterior pituitary cell cultures (1149), it seems
plausible that these peptides contribute to the local reg-
ulation of prolactin secretion. Endothelin-like immunore-
activity is detectable in lactotrophs (905) as well as other
cells of the anterior lobe (1292). Moreover, by using en-
dothelin-specific reverse hemolytic plaque assay, it has
been shown that endothelin is indeed secreted from lac-
totrophs. Interestingly, lactotrophs obtained from cycling
female rats show signs of more vigorous endothelin se-
cretion compared with lactotrophs from males (905). The
amount of endothelin secreted by the lactotrophs is bio-
logically significant, since it is sufficient to inhibit prolac-
tin secretion, as attested by the fact that the presence of
ET, receptor antagonists markedly enhance prolactin se-
cretion as detected by reverse hemolytic plaque assay
(905). Because lactotrophs bear ET, receptors (904,
1532), it is not surprising that ET antagonists were inef-
fective on prolactin secretion (905). Because in these
experiments the reverse hemolytic plaque assay was per-
formed under conditions that preclude paracrine interac-
tions, the argument has been made that prolactin secre-
tion is under autocrine control by endothelins (905). We
should add, however, that these data, while strongly sup-
porting the possibility of autocrine regulation by endothe-
lins, by no means exclude paracrine control of prolactin
secretion by endothelins.

1V) Prolactin. It is well established that prolactin can
inhibit its own secretion by activating neuroendocrine
dopaminergic neurons in the hypothalamus (65, 82, 773a,
1353, 1584). However, there is evidence that prolactin can
also act directly at the lactotroph and inhibit its own
secretion in an autocrine/paracrine manner, in both hu-
man and rat pituitary glands (146, 890, 795). Prolactin
receptor is detected on the membrane of lactotrophs
(323). Moreover, by using electron microscopy and auto-
radiography, it has been found that prolactin is bound to
the plasma membrane and subsequently internalized and
found in the Golgi apparatus, secretory granules, nucleus,
and mitochondria of the lactotroph (627).

These data demonstrate clearly that lactotrophs have
the capacity to perceive and respond to prolactin in their
environment. It is interesting to note that in certain phys-
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iological or pathological conditions, such as lactation or
prolactinoma, lactotrophs apparently lose their autoin-
hibitory response to prolactin. It appears that the autoin-
hibitory function of prolactin is related to a particular
isoform of the hormone (768) and that an impairment of
the synthesis and secretion of this isoform is responsible
for the lack of prolactin-induced autoinhibition (768). On
the other hand, another isoform of prolactin can act as an
autocrine growth factor in tumorous cells (980), resulting
in unrestrained cell proliferation (980).

It seems well established that prolactin, together
with VIP, galanin, and endothelin, can regulate lac-
totrophs’ function in an autocrine manner, and there is a
high probability that such regulation is indeed operational
in vivo. However, by confirming the autocrine regulatory
function of these agents does not exclude the possibility
that they also subserve a role as paracrine modulators of
prolactin secretion as well. Indeed, simply by considering
that a large proportion of the cells in the anterior lobe is
lactotroph and many lactotrophs are actively secreting
VIP, galanin, endothelin, and prolactin, there is reason to
believe that paracrine type of interactions among lac-
totrophs through these peptides may also exist.

V) ANG II. There is abundant evidence that ANG Il is
formed in the anterior lobe of the pituitary gland (601,
602, 1290, 1674, 1677), specifically in the lactotrophs
(1529, 1674). Moreover, ANG Il receptors have been found
in the pituitary (1244), presumably in lactotrophs (14, 273,
746, 1244). Because ANG II is a potent stimulator of
prolactin release (14, 426, 1575), it seems quite likely that
angiotensin stimulates prolactin secretion in a paracrine
and/or autocrine manner (987, 1265, 1676, 1678).

VI) Substance P. Although substance P affects pro-
lactin secretion through a neuroendocrine or neurotrans-
mitter role (reviewed in sect. viiA), there is some evidence
that it may also originate from a pituitary source. The
preprotachykinin gene has been found in the anterior
pituitary, and its expression is regulated by thyroid hor-
mone (872) and estrogen (225). Moreover, substance P
and other preprotachykinin gene products are also found
in the anterior lobe (428, 1226). Finally, with a cell immu-
noblot assay, it has been shown that anterior pituitary
cells actually secrete substance P (85). Unfortunately, in
none of these studies was the endocrine phenotype of the
anterior pituitary cell determined, nor was a substance P
antagonist applied. Consequently, there is no direct proof
to differentiate substance P as either an autocrine or
paracrine regulator of pituitary prolactin secretion.

VII) Growth factors. There is strong evidence for an
autocrine/paracrine role for transforming growth factor-3
(TGF-B), epidermal growth factor (EGF), and nerve
growth factor (NGF) in the control of prolactin secretion.

A) TGF-B. TGF-B is a polypeptide of 25 kDa and
exists as three isoforms (TGF-B1, TGF-2, and TGF-£3).
The anterior pituitary contains TGF-B1 and TGF-B3 (247,
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1389, 1552). In lactotrophs, the presence of TGF-B1 pro-
tein as well as TGF-B receptor and its mRNA have been
demonstrated (247, 391, 1552). The lactotroph expresses
both forms of the TGF-B receptor, designated type I and
type II (1389). Most of the biological activity of TGF-S1
can be attributed to the type I receptor, whereas the
growth-inhibitory response is due to type II receptor ac-
tivation (1553). Intrapituitary administration of TGF-£1
suppresses pituitary cell proliferation and decreases pitu-
itary prolactin content and plasma prolactin concentra-
tion (1198). Moreover, TGF-B inhibits basal secretion of
prolactin in a pituitary monolayer culture system (1262)
as well as prolactin gene expression in GHy cells (408)
and normal anterior pituitary cells (5, 1712), likely by a
paracrine route (5). It is interesting to note that in rats in
which pituitary tumors are induced by estrogen, the pro-
teins and mRNA for TGF-B1 and the type II receptor are
reduced (1389). This finding raises the possibility that
pituitary tumorigenesis may be the result of suppression
of TGF-B activity.

B) EGF. EGF is a single-chain polypeptide originally
extracted from the mouse submaxillary gland. In the an-
terior pituitary gland, the presence of prepro-EGF mRNA
(1444) and the secretion of EGF peptide has been dem-
onstrated (988). Within the pituitary gland, EGF binding
sites are restricted to lactotrophs (303, 536). Functionally,
EGF promotes differentiation of lactotrophs at the ex-
pense of somatotrophs in neonatal rats (542) and stimu-
lates prolactin gene transcription in and prolactin secre-
tion from lactotrophs (1263). EGF also induces
expression of functional D, dopamine receptors in lac-
totroph-like cell lines lacking the receptor (1204). Approx-
imately 20% of the cells in the anterior pituitary gland of
lactating rats secrete EGF, with 27% of those being lac-
totrophs (1239). Without reference to cell of origin, it has
been suggested that EGF exerts its effects through auto-
crine and paracrine routes (1237). It is interesting to note
that anterior pituitary cells from proestrous rats secrete
the greatest amount of EGF and that estradiol is a potent
stimulator of EGF secretion from rat pituitary cells
(1238). With this in mind, it is tempting to speculate that
estrogen induces the proestrous surge of prolactin secre-
tion (1302) partly by stimulating intrapituitary EGF secre-
tion, hence priming the lactotrophs for the massive hor-
mone secretion brought about by hypothalamic factors.

C) NGF. The 26-kDa peptide NGF' and its receptor are
found in all three lobes of the pituitary gland, with great-
est abundance in somatotrophs and lactotrophs (1202,
1395). Stimulation of these cells with VIP (1201) or inter-
leukin-18 (1396) results in secretion of NGF. Much like
EGF, NGF promotes differentiation of lactotrophs at the
expense of somatotrophs in GHj cells (1203) and anterior
pituitary cells from early postnatal rats (1201). NGF also
promotes mitogenesis of immature pituitary cells (1437).
Unlike EGF, NGF does not appear to be involved directly
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in the control of prolactin secretion. It has been proposed
that NGF plays a dual role in the pituitary gland: a local
one as a stimulator of differentiation and proliferation of
lactotrophs during pituitary development and a systemic
one as a neurohormone that is cosecreted with prolactin
into the bloodstream (1205). Furthermore, NGF is an
autocrine differentiation factor for prolactin-secreting
cells. Escape from NGF control appears to be one of the
mechanisms involved in the development and progression
of prolactinomas. Exposure of prolactinomas refractory
to dopaminergic therapy to exogenous NGF results in
their differentiation into lactotroph-like cells reexpress-
ing the D, receptor protein (1205). This observation may
open the way to a sequential therapy with NGF and
bromocryptine for patients refractory to the conventional
therapy (1205).

VIII) Calcitonin. Calcitonin-like immunoreactivity is
present and released from rat anterior pituitary cells (514,
880, 1225, 1593-1595, 1597, 1631). Moreover, exogenous
salmon calcitonin inhibits basal and TRH-stimulated pro-
lactin release as well as prolactin gene transcription in
cultured rat pituitary cells (514, 880, 1225, 1593-1595,
1597, 1631, 1894). Therefore, it has been suggested that
calcitonin affects prolactin secretion by a paracrine
mechanism (514, 880, 1225, 1593-1595, 1597, 1631). Ad-
ministration of an antiserum to salmon calcitonin to ovari-
ectomized rats enhances prolactin secretion (1595). Sim-
ilarly, addition of the antiserum to cultures of rat pituitary
cells enhances prolactin secretion in the presence or ab-
sence of dopamine (1595). Immunocytochemical studies
reveal a nonuniform distribution of calcitonin-like immu-
noreactivity in the anterior lobe because the cells of the
inner zone adjacent to the intermediate lobe contain the
greatest salmon calcitonin-like immunoreactivity (1595).
Although they are clearly not lactotrophs, the phenotype
of these cells has not been determined unequivocally.
Nevertheless, it has been suggested that they may be
gonadotrophs that affect prolactin secretion by a para-
crine and/or juxtacrine pathway (329). There may also be
a feedback relationship between prolactin and calcitonin,
since the circulating levels of calcitonin in male rats are
enhanced by hyperprolactinemia produced by homotrans-
plant of pituitaries to the kidney capsule (1084).

IX) TRH. Earlier we reviewed the extensive litera-
ture that TRH of hypothalamic origin is a potent stimula-
tor of pituitary prolactin secretion. It is now apparent that
some of the TRH may originate within the anterior pitu-
itary gland. However, it is not clear if this is a source for
TRH-stimulated prolactin secretion. Indeed, pro-TRH-de-
rived peptides have been characterized in long-term cul-
tures of anterior pituitary cells (232), while pro-TRH
mRNA has been found in a subpopulation of soma-
totrophs (234) in which the gene expression is regulated
coordinately with the growth hormone gene by glucocor-
ticoids (233) and thyroid hormone (235). TRH appears to
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be most abundant in anterior pituitary glands obtained
from 15-day-old female rats (235, 236). Although TRH is
found in pituitary cell cultures, the peptide from this
source apparently does not affect prolactin synthesis or
secretion (237).

X) Cytokines. IL-6 is a cytokine found in the anterior
pituitary gland (1669), likely produced by folliculostellate
cells (1801). IL-6 has been shown to stimulate prolactin
secretion, both in vitro (1095, 1667) and in vivo (1095). In
addition to VIP (1665), IL-1 can also stimulate the release
of IL-6 from anterior pituitary cells (1666, 1668). Taken
together, these data imply that VIP-induced prolactin se-
cretion may involve a VIP—IL-1—1L-6 cascade within the
pituitary gland. However, further studies are required to
confirm the role of this cascade in the intrapituitary reg-
ulation of prolactin secretion.

XI) GnRH. Perhaps the first example for paracrine
modulation of lactotrophs described (425), is the stimu-
lation of prolactin release by GnRH. The most prominent
prolactin-releasing activity of GnRH could be detected
during the early postnatal life when the relative propor-
tion of gonadotrophs is much higher than in adults (425).
Moreover, GnRH will only stimulate prolactin secretion
when lactotrophs are cocultured with gonadotrophs
(425), indicating that not GnRH itself but other gonado-
troph-related products may be responsible for the GnRH-
induced stimulation of prolactin secretion. Because all
components of the renin-angiotensin system had been
described previously to be present in gonadotrophs, the
agent mediating this effect was thought to be ANG II
(426). However, other experimental data (1486) do not
support the role of ANG II in the GnRH-induced and
gonadotroph-mediated paracrine influence on prolactin
release. The physiological significance of the paracrine
regulation of prolactin secretion by gonadotrophs is un-
known. However, it probably operates in vivo, since
GnRH has been reported to release prolactin in monkeys
(609, 1350) and in women during the menstrual cycle (295,
1910).

In addition to the effect of GnRH on the secretory
function of lactotrophs, it also affects cell mitosis and
cytodifferentiation within the anterior lobe. Treatment of
reaggregate pituitary cell cultures with GnRH enhances
the total number of lactotrophs replicating DNA (1748)
and containing prolactin mRNA (1787). These effects are
mediated by growth factors present in the medium con-
ditioned by gonadotroph-enriched cell population ob-
tained from 14-day-old rats. This recruitment of lac-
totrophs may not be restricted to the early postnatal
period of life. During the period of cytodifferentiation as
well as in certain physiological situations such as preg-
nancy or lactation, recruitment seems to be due to the
differentiation of progenitor or immature cells, rather
than to a mitogenic action on preexisting lactotrophs
alone (42, 1787).
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Search for paracrine factor(s) mediating lactotroph
recruitment by gonadotrophs has continued and yielded a
number of candidates, such as the common «-subunit of
the pituitary glycoprotein hormones (1478, 1686, 1786,
1787, 1862, 1883), the NHy-terminal fragment of proopio-
melanocortin [POMC-(1—74), isolated from conditioned
medium of gonadotroph cell culture] (1749, 1750). Ongo-
ing studies using transgenic animals targeting gonado-
trophs likely will help to clarify the precise mechanism
and physiological significance of the paracrine communi-
cation between lactotrophs and gonadotrophs (1802).

XII) Acetylcholine. An intrapituitary cholinergic sys-
tem, acting through muscarinic receptors, exerts a tonic
inhibitory influence on prolactin release (1245, 1564,
1729). Acetylcholine is produced within the anterior lobe,
most likely in corticotrophs (276, 277). Although immu-
noreactivity for choline acetyltransferase (1637), the en-
zyme catalyzing the biosynthesis of acetylcholine, and
cholinesterase activity (121) can be predominantly local-
ized in corticotrophs, atropine, a potent muscarinic recep-
tor antagonist, dose-dependently increases prolactin re-
lease in reaggregate cells of anterior lobe (276). Addition
of cholinergic agonists to the cultures inhibits prolactin
secretion (278, 1513). Both effects require the presence of
glucocorticoids in the culture medium (278). Taken to-
gether, it appears that corticotrophs exert a tonic inhibi-
tory influence on prolactin release that is mediated by
acetylcholine acting through a muscarinic receptor (276).
However, although the interaction between corticotrophs
and lactotrophs and the role of acetylcholine in its medi-
ation is one of the best-characterized paracrine mecha-
nisms in the anterior lobe, it is still difficult to place in a
physiological perspective. In addition to acetylcholine,
galanin and TRH have also been detected in corticotrophs
(808), indicating that, at least in certain species, cortico-
trophs might affect lactotrophs by these two potent pro-
lactin regulatory peptides (905, 1577).

XIIT) Factor(s) from folliculostellate cells. Follicu-
lostellate cells (immunocytochemically identified as con-
taining S-100 protein) suppress prolactin-secretory re-
sponse to ANG II and TRH when they are cultured with
lactotrophs as cell aggregates (101). As with paracrine
interactions between gonadotrophs and lactotrophs
(426), intimate contacts between lactotrophs and follicu-
lostellate cells are not required for this inhibition, since it
is still observed after dispersion of the coaggregates into
single cells (101). These observations indicate that a dif-
fusible inhibitory factor is secreted by the folliculostellate
cells. However, the identity of this putative paracrine
factor is unknown. It is also difficult to reconcile the
observed inhibitory influence of the folliculostellate cells
with the assumption that these cells are also the source of
the prolactin-releasing IL-6 as we discussed above.

C) CONCLUSION. Several paracrine interactions between
lactotrophs and other cellular phenotypes are now well

FREEMAN, KANYICSKA, LERANT, AND NAGY

Volume 80

established and likely more will soon be discovered. We
are only beginning to place intrapituitary regulative net-
works into a physiological perspective. In general, it
seems unlikely that paracrine interactions are responsible
for acute regulation of the release of prolactin, since the
dynamic regulation of prolactin secretion more likely re-
lies on hypothalamic factors. Indeed, paracrine interac-
tions seem more likely to be responsible for changes
occurring within a much slower time domain, pertaining
to cellular development and differentiation. In addition,
autocrine and/or paracrine regulation likely play an es-
sential role in changing of responsiveness to hypotha-
lamic factors during the estrous cycle, pregnancy, or lac-
tation.

2. Neural and intermediate lobes

There is abundant evidence in the literature that the
lactotroph is influenced by the neural and intermediate
lobes of the pituitary gland (141). Secretory products of
the neural and intermediate lobes of the pituitary gland
can reach the anterior lobe through the short portal ves-
sels, which represents a vascular communication be-
tween these lobes and the anterior lobe of the pituitary
gland. Thus the communication between the neurointer-
mediate lobe and the anterior lobe of the pituitary gland is
both neuroendocrine and endocrine. Several observations
suggest that dopamine, oxytocin, vasopressin, «-MSH,
and possibly other less well-characterized compounds as
well, after being released at the posterior and/or interme-
diate lobes of the pituitary gland, can reach the anterior
lobe and participate in the control of prolactin secretion.

A) NEUROINTERMEDIATE LOBE PROLACTIN-RELEASING FACTOR.
Posterior pituitary lobectomy elevates prolactin levels in
the blood of cycling and lactating rats (143, 1255, 1406).
Because dopamine is found emanating from THDA axon
terminals in the posterior lobe (176), the response might
be due to the removal of dopamine of posterior lobe
origin (420, 605-607, 1258), which is transported to the
anterior lobe through short portal vessels. In the course of
performing these studies, Ben-Jonathan and colleagues
(1256) made the serendipitous observation that the suck-
ling-induced release of prolactin was blocked when the
neural and intermediate lobes were removed. The ab-
sence of a prolactin-secretory response is not due to the
removal of oxytocin, since replacement of oxytocin failed
to overcome the effects of removal of the neurointerme-
diate lobe (1256). They therefore concluded that the neu-
rointermediate lobe of the pituitary gland contains a non-
oxytocinergic prolactin-releasing activity. Indeed, rat
neurointermediate lobe extracts stimulate prolactin se-
cretion in vivo (822) and in vitro (821, 827, 827). Bovine
intermediate lobe extracts share the same property
(1539). Similarly, cocultures of neurointermediate and
anterior lobes enhance basal (483) as well as secreta-
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gogue-induced (484) prolactin secretion. The prolactin-re-
leasing activity has subsequently been localized to the inter-
mediate lobe of the pituitary gland of the rat (1011, 1681).

Attempts have been made to chemically characterize
the activity. It seems clear that the activity is due to a small
peptide that is distinct from TRH, ANG II, VIP, arginine
vasopressin, and oxytocin (821, 827, 1059). An interesting
approach has been taken to produce a model for further
purification of the intermediate lobe prolactin-releasing ac-
tivity. Transgenic mice were generated with large tumors
localized to the intermediate lobe (27). These animals were
hyperprolactinemic. Inoculation of nude mice with the tu-
mor cells resulted in large secondary tumors. Crude extracts
of both primary and secondary tumors stimulated prolactin
secretion from GH; cells in culture. With chromatography,
the activity was found in two size classes: a large 70- to
80-kDa bioactive peak and two very small hydrophobic
peaks. None of the elution profiles coincided with S-endor-
phin, a- or B-melanocyte-stimulating hormone, ACTH, TRH,
oxytocin, ANG II, and VIP. Although these data suggest that
the prolactin-releasing activity indeed arises from mela-
notrophs in the intermediate lobe, care should be taken
when equating data derived from tumorous tissue to that
obtained from normal cells.

B) -MELANOCYTE-STIMULATING HORMONE. a-Melanocyte-
stimulating hormone of intermediate lobe origin appears
to play a unique role in the function of the lactotrophs
within the anterior lobe. Among the cells of the anterior
pituitary, the lactotroph possesses the greatest number of
a-melanocyte-stimulating hormone binding sites (1923).
Rather than act as a pure PRF, a-melanocyte-stimulating
hormone appears to act as a lactotroph-responsiveness
factor that plays two roles. With the use of the reverse
hemolytic plaque assay it was shown that a-melanocyte-
stimulating hormone is responsible for the “recruitment”
of lactotrophs from a nonsecretory to a secretory pool as
well as enhancement of the sensitivity of lactotrophs to
known secretagogues for prolactin (497, 760, 761). The
enhanced responsiveness of lactotrophs is due to stimu-
lation, by a-melanocyte-stimulating hormone, of calcium
entry from extracellular sources (1330). These effects
require N-acetylation of a-melanocyte-stimulating hor-
mone for full biological activity (498). It has been sug-
gested that the enhanced prolactin-secretory responsive-
ness of the pituitary gland of suckled dams to
secretagogues (760, 761) and the estrogen-induced re-
lease of prolactin (497) are both mediated by a-melano-
cyte-stimulating hormone.

C. Peripheral Organs

1. The ovaries

A) ESTRADIOL. Ovariectomy has a dramatic effect on
the lactotroph (reviewed in Ref. 1768). Removal of the
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ovaries is followed by a decrease in lactotroph size and
number as well as the intracellular abundance of prolac-
tin-secretory granules (429). Estradiol is the dominant
ovarian hormone that reverses these effects and subse-
quently stimulates prolactin secretion (309). Indeed, in
the rat, immunoneutralization of the rising blood levels of
estradiol on diestrus through early proestrus blocks the
preovulatory release of prolactin on proestrus (1302).
Moreover, administration of estradiol to ovariectomized
rats results in proestrus-like prolactin-secretory release
daily for a number of days (1297, 1305).

Estradiol affects the secretion of prolactin at two
levels. Directly at the pituitary lactotroph, estradiol con-
trols prolactin gene expression and modifies its sensitivity
to physiological stimulators and inhibitors of prolactin
secretion. Within the hypothalamus, estradiol modifies
the activity of the neuroendocrine neurons known to
control prolactin secretion.

It has been suggested that estradiol is responsible for
the differentiation of lactotrophs from a pluripotent pool
of somatotrophs and mammosomatotrophs (191), an ef-
fect which requires the presence of the neurointermediate
lobe of the pituitary gland (496). Estrogen regulates pro-
lactin gene expression within the anterior pituitary gland
(1045, 1159, 1627, 1628) by binding to its nuclear receptor
and subsequently conferring DNA binding and transcrip-
tional activation of the gene (1867). Progesterone (326) or
androgens (1759) in turn inhibit estrogen-induced prolac-
tin gene expression. The transcription of the prolactin
gene results in increased synthesis of prolactin, and the
increased prolactin secretion may be a reflection of spill-
over of newly synthesized hormone from the estrogen-
stimulated lactotrophs. Although estrogen increases the
percent of prolactin-releasing cells in the anterior pitu-
itary, it does not increase the percent of total pituitary
cells expressing prolactin mRNA (1562). This would sug-
gest, in contrast to earlier observation (191), that lac-
totrophs are not differentiated from a pluripotent pool by
estrogen. However, other studies have shown that differ-
entiation occurs posttranscriptionally (1428) and thus re-
solves this discrepancy. Nevertheless, there is a direct
relationship between the amount of prolactin secreted by
and the amount of prolactin mRNA in lactotrophs ob-
tained from estrogen-treated rats (1009). Moreover, estra-
diol enhances the secretion of prolactin through a consti-
tutive pathway since nifedipine, a blocker of voltage-
sensitive calcium channels which are required for
secretion, does not interfere with the estradiol-induced
enhancement of prolactin mRNA/lactotroph (1009).

Estrogens modify the response of the rat lactotroph
to physiological inhibitors and stimulators of prolactin
secretion. Estradiol is antidopaminergic at the lactotroph
(1024, 1454, 1454, 1875); that is, dopamine is less potent as
an inhibitor of prolactin secretion when lactotrophs are
exposed to estradiol in vitro (1454, 1454, 1875) or in vivo
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Neurotransmitter Receptor in the CNS CNS Target Effect on PRL Secretion*
Biogenic amines
Dopamine D, (155, 475) | TIDA (155, 475) 1 Basal (155, 475)

Norepinephrine and
epinephrine

Serotonin (5-HT)

Histamine

Acetylcholine (ACh)

Thyrotropin releasing
hormone

Oxytocin and vasopressin

VIP/PHI

PACAP

Opioids (OPI)

Angiotensin II

Substance P (SP)

Galanin (GAL)

Neurotensin (NT)

Neuropeptide Y (NPY)
Somatostatin (SST)

Calcitonin (CT) and calcitonin
gene-related peptide
(CGRP)

D, (156, 474, 486, 1124)

a, (400)
a, (1047, 1436, 1780)
(884, 885, 983)

B (974)

5HT,,, 5HT, (108, 1040)
5HT,, (108, 1040)

H1 (59, 644, 1044, 1780)
H2 (58, 457, 460, 1468, 1780)

AChy (58, 180, 1696)
AChy, (58, 180, 1696)

TRH-R (836)

(246)

(163)

(653, 654, 1344, 1623)

W, k (245, 261, 934, 984, 985)

k (937)

ORL1, opioid receptor-like
receptor (240, 1189)

AT-R (194, 1751)
AT, (869, 871, 1022, 1521,
1673, 1777)

Tachykinin receptors (932,
1120, 1456)

GAL-R (136, 915, 1890)

NT-R (1328, 1507)

Y,, Y, (897, 1381)

SSTRI-5 (390, 463, 671, 1190,
1195, 1334, 1375, 1744)
SSTR2 (135, 1588)

CT and CGRP receptors
(1644)

1 TIDA (156, 474, 486, 1124)

PVN (? TRH) (1780)

TIDA (775, 805)

PVN (104-107, 1200)
SCN (921)
TIDA (1152, 1420)

TIDA (558, 622, 1571)

TIDA (504, 665, 1261, 1696, 1885)
$(622)

Peptides
1 TIDA (227, 836, 1342)

1 TIDA (1919) +(1209)
SCN (842)

Hypothalamus (849, 917, 977, 1823)
SCN (123)
1 TIDA (813)

1 TIDA (40, 813)

PVN, SON, MBH (1119)

ARC (48, 49)

| TIDA (31, 70, 83, 86, 440, 472,
547, 693, 742, 908, 965, 1121,
1123, 1467, 1806, 1836)

TIDA (871a, 1586, 1916)

mPOA (1120, 1416)
ARC (1775)
SON/PVN (175)

MBH (136, 1188)

TIDA (806)

| DA release/ME (1327)
1 VIP release/MBH (844)

PVN/ARC-ME (831)
1 TIDA (692, 751, 964, 1167, 1373,
1856)

1 TIDA (592, 714)
CNS (556, 1462)

| TIDA (135, 898, 1588, 1645)

CNS (1679)
1 TIDA (341)

| Basal (474)

| Basal (400, 1012)

1 Basal (1047, 1436, 1736)

1 Ovx+E, (1012)

1 Proestrus (1003)

1 Suckling (1436) 1(286)

1 Stress (1003)

1 Basal (392) (102, 392, 393)
& Ovx+E, (1734)

1 Basal (551, 999, 1085, 1788)
1 Ey/proestrus (260, 313)
1 Suckling (600, 972, 1181)

1 Basal (1780)
1 Stress (961, 1656)

| Basal (662, 665, 1043)
| Ey/proestrus (58, 180, 1696)
| Suckling (180)

| Basal (836, 1342)

| Basal (1087, 1235)
| Stress (1235)

1 Basal (813)
1 Ey/proestrus (74, 1547, 1794)

| Basal (40, 813)
1 Basal (anesthetized) (858, 1900)

1 Basal (240, 742, 1175, 1804, 1805)
1 Ey/proestrus/PSP (18, 833, 1525, 1554)
1 Lactating (70, 473)
1 Nonsuckled (1278)
| Suckled (1278)
1 Stress (473, 540, 541, 866, 908, 1504,
1540, 1634, 1789, 1891)

(1) Basal (1265, 1266, 1521, 1675, 1678)
| Ovx+E, (1265, 1266, 1521, 1673)
| Stress (1265, 1266, 1521, 1673)

1 Basal (489, 1416, 1820)
(80, 81, 701) (402)
| Basal (low dose) (80, 81, 701)

1 Basal (973, 975, 976, 1177) 1(1360)
1 Proestrus (1079, 1188)

| (964, 1166, 1167, 1482)
| E./proestrus (1166)
| Stress (1166, 1167, 1753)

| Basal (592, 618, 1466)
1 Basal (898)

& Basal (341, 1347, 1348, 1679) +(531)
& Ey/proestrus (371, 372)

| Suckling (495, 1348)

| Stress (370, 1633)
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TABLE 1— Continued
Neurotransmitter Receptor in the CNS CNS Target Effect on PRL Secretion*

Bombesin-like peptides
(gastrin-releasing peptide
and neuromedin B and C)

(126, 1671) 1 TIDA (95, 257, 886, 929, 1099, | Basal (912, 928, 929, 1705, 1757)
1100, 1122, 1757) | Ovx (95)
| E, (1099) $(700, 1483)

| Stress (1705)

Cholecystokinin (CCK) CCK-R (1115, 1410) 1 Basal (1714, 1821, 1822) $(912)
CCKj, > CCK,

(hypothalamus) (1860)
ANP-R (713, 1522)

ARC/TIDA (1049, 1371)
1 VIP (1714)

Atrial natriuretic peptide TIDA (566, 1534) 1(1536) | Basal (1531, 1533)

(ANP)
PVN (713) & Proestrus (1604)
| Stress (571, 1531, 1533)
Amino acids and nitric oxide
Glutamate/aspartate NMDA (91) PIF (TIDA) and/or PRF (PVN) (91) | Basal (91)

| Cycling (1, 208, 209)
| Suckling (91) 1 | (1)

1 Basal (588, 998, 1106, 1210, 1249,
1356, 1378, 1846) $(1318)
1 Suckling (1439)

1 Basal (641, 642)
1 Ey/proestrus (185, 1912)
1 Stress (1157)

y-Aminobutyric acid (GABA)  GABA, (39, 588, 661, 1826,
1881)

GABA,, (1049)

| TIDA (37, 1049, 1881)
SON/PVN (1174, 1737)
TIDA (643, 1912)

Nitric oxide (NO) SON/PVN (51, 172, 213, 1767)

Arrows indicate the nature of the effects of the neurotransmitters: | increase/facilitation, | decrease/inhibition (arrows in parentheses
indicate a less than robust effect); &, no effect. ARC, arcuate nucleus; MBH, medial basal hypothalamus; mPOA, medial preoptic area; PVN,
paraventricular nucleus; TIDA, tuberoinfundibular dopaminergic system; SON, supraoptic nucleus. Reference numbers are given in
parentheses. * Only those data are considered where the experimental paradigm indicates that the observed effects on prolactin secretion are
probably mediated within the central nervous system (CNS). These experimental approaches usually involve intracerebroventricular administration
of a neurotransmitter, its precursor, its selective agonists and/or antagonists, as well as specific antibodies developed against the endogenous
transmitter or modulator. The effects of these manipulations were evaluated on nonstimulated (basal) as well as stimulated prolactin secretion. The
latter group is further divided according to the cause of elevated prolactin secretion: estradiol and/or proestrus (E,/proestrus), pseudopregnancy

(PSP), suckling stimulus in lactating animals (suckling), or stress.

(346, 1024). Apparently, estradiol exerts this effect by
decreasing the number of dopamine receptors (1454).
In contrast, estradiol enhances the sensitivity of the
lactotroph to TRH (623). It does so by increasing the
number of TRH receptors (406). Estradiol depresses
the inhibitory input the hypothalamus exerts over pitu-
itary prolactin secretion. Long-term treatment with es-
tradiol lowers the concentration of dopamine in hypo-
thalamo-hypophysial portal plasma bathing the anterior
pituitary gland (365). Similarly, the concentration of
dopamine in portal blood is diminished coincident with
the beginning of the preovulatory release of prolactin
on proestrus (140). In addition, treatment with estra-
diol decreases the activity of TH, the rate-limiting en-
zyme of dopamine biosynthesis, in TIDA axons termi-
nating in the median eminence (181, 873, 1027, 1236,
1385). Likewise, the activity of these neurons decreases
concomitant with the release of prolactin on proestrus
(287, 1027). The surge of prolactin released in response
to estradiol increases the activity of these dopaminer-
gic neurons that subsequently terminates prolactin se-
cretion (44, 416, 417, 1218, 1220, 1758).

B) PROGESTERONE. A direct role for progesterone in the
synthesis and release of prolactin is not as well described

T Conflicting observations.

as that of estradiol. Some studies report no effect (309,
1550), whereas others report inhibition (623, 745) or en-
hancement (1911) of prolactin secretion in response to
progesterone. On the other hand, progesterone is capable
of advancing the time of day in which an estrogen-induced
surge of prolactin occurs (259, 1911). It appears to exert
this effect by actions within the hypothalamus. Progester-
one stimulates dopamine release into hypophysial portal
blood (365). However, progesterone has a dual effect on
TH activity in TIDA neurons. Acutely, progesterone neg-
atively modulates TH activity (61, 62, 68, 134, 1911). Such
observations are consistent with the advancement of the
estradiol-induced surge of prolactin by progesterone. Sub-
sequently, progesterone enhances TH activity (66), a find-
ing which is consistent with the inhibition of prolactin
secretion by progesterone.

C) CHANGING RATIO OF OVARIAN STEROIDS: ESTROUS CYCLE. We
can now place all of these observations in a physiological
context. During the afternoon of diestrus-2 of the rat’'s
estrous cycle, the rising titers of ovarian estradiol (1647)
stimulate the hypothalamo-pituitary axis to release a
“surge” quantity of luteinizing hormone and prolactin on
proestrus (1302). The surge of luteinizing hormone stim-
ulates an increase in ovarian progesterone secretion (583)
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that initially participates with estrogen in decreasing the
activity of TIDA neurons (61, 62, 68, 134, 1911). The
resulting estradiol-induced surge of prolactin (1758) along
with progesterone (66) activates TIDA neurons which, in
turn, extinguishes the surge of prolactin.

2. The adrenal cortex

A rarely discussed aspect of the inhibitory influences
on adenohypophysial prolactin secretion is the potential
role of the adrenal gland. It is well known that in rats,
plasma levels of prolactin increase significantly after ad-
renalectomy, whereas the effect of adrenalectomy can be
reversed by administration of corticosteroids (94, 94, 139,
206, 312, 1032, 1438, 1798). Similar effects of adrenalec-
tomy and the synthetic glucocorticoid dexamethasone
have been shown in estrogen-induced (284, 285), stress-
induced (521, 739, 1504), and TRH-induced (1581) prolac-
tin responses. Moreover, consistently high levels of
plasma prolactin have been found throughout the entire
lactation period in adrenalectomized dams (1798). Signif-
icantly higher plasma prolactin response to the dopamine
receptor blocker haloperidol could be detected in adre-
nalectomized lactating mothers (936). Dexamethasone
pretreatment of lactating rats completely blocks suckling-
induced prolactin release (122). This effect is transient,
since it cannot be detected 24 h later. In contrast to the
dramatic effect on the suckling-induced prolactin re-
sponse, dexamethasone does not inhibit domperidone-
induced pituitary prolactin release, indicating that dexa-
methasone cannot interfere with the antagonist binding
and its effect at the level of dopamine receptor of lac-
totrophs. Dexamethasone also suppresses prolactin re-
lease induced by the suckling stimulus when it is im-
planted into the medial basal hypothalamus (122).
Blockade of glucocorticoid receptors by the administra-
tion of RU486 (mifepristone) enhances prolactin secre-
tion (1799). RU486 is also a progesterone antagonist.
However, immunoneutralization of circulating progester-
one does not affect prolactin secretion (284). Long-term
elevation of the serum glucocorticoid level by chronic
administration of ACTH (541, 908) or hydrocortisone
(937) or by prolonged stress (540) decrease opioid-in-
duced prolactin secretion. These effects of glucocorti-
coids are taking place predominantly within the CNS. It is
assumed that the decreased responsiveness of the TIDA
neurons to inhibitory inputs brought about by the ele-
vated glucocorticoid levels (908) may be responsible for
the blunted responses of prolactin secretion. Thus the
regulatory pathway mediating neurogenic stimuli (suck-
ling or stress)-induced prolactin release is extremely sen-
sitive to glucocorticoid feedback mechanisms, and the
adrenal glands of an animal provide a physiologically
important signal to the hypothalamo-hypophysial mecha-
nisms regulating prolactin secretion.
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Aside from the regulation of prolactin secretion, glu-
cocorticoids also influence the differentiation (1557) and
morphology (289) of lactotrophs. Indeed, glucocorticoids
stimulate the differentiation of somatotrophs but sup-
press that of lactotrophs in the fetal rat pituitary gland
(1557). Adrenalectomy increases the cellular and nuclear
areas of prolactin-immunoreactive cells. Glucocorticoid
replacement in vivo reverses these effects (289). In cul-
tured cells, exposure to glucocorticoids reduces numeri-
cal density and cellular, cytoplasmic, and nuclear areas of
prolactin-immunoreactive cells (289). These actions of
glucocorticoids may merely be a reflection of another site
at which the steroid regulates the immune system: inhi-
bition of secretion of the immunomodulatory hormone
prolactin.

3. The placenta

As noted earlier, there is abundant evidence that
the rat placenta secretes a lactogen that is similar in
biological activity to pituitary prolactin. Aside from
maintaining pregnancy and preparing the mammary
gland for subsequent lactation, this lactogen also plays
a major role in regulating pituitary prolactin secretion
(64, 561, 649, 1755, 1756, 1760-1763, 1832—-1834, 1838).
For example, it is well known that the two surges of
pituitary prolactin secretion last appear on day 10 of a
21-day pregnancy (1648). Coincident with this is the
increase in the concentration of placental lactogen in
the blood of the pregnant rat at mid-pregnancy (1760—
1763). Although rat placental lactogen (1834), spent
placental culture media, or maternal serum (649) will
inhibit prolactin secretion from pituitary cells in cul-
ture, injection of rat placental lactogen will not inhibit
prolactin secretion in vivo (1837). On the other hand,
injection of spent incubation media (1832) or surgical
implantation of a lactogen-secreting choriocarcinoma
(1146, 1756) will effectively inhibit prolactin surges in
vivo. Although placental lactogen will diminish the
surges of prolactin in pregnant or pseudopregnant rats
as well as suckling-induced prolactin secretion (560,
561), it will not inhibit the ante-partum secretion of
prolactin (561, 668). This implies some alteration that
occurs within the hypothalamo-pituitary axis to change
its response to placental lactogen.

Aside from the pituitary gland as the obvious site at
which placental lactogen exerts its effect on prolactin
secretion, there is ample evidence that the effect may also
be exerted within the hypothalamus. Indeed, human pla-
cental lactogen is quite effective in activating TH in TIDA
neurons (410) and consequently suppressing the surges of
prolactin during early pregnancy (668) when injected into
the cerebral ventricles. Similarly, transplantation of lac-
togen-secreting rat choriocarcinoma cells also increases
TH activity in TIDA neurons and suppresses prolactin
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TABLE 2. Neurohormones regulating prolactin secretion

Receptor/G Protein in the
Neurohormone Lactotrophs Signal Transduction Direct Effect on PRL Secretion

Established prolactin releasing and release-inhibiting neurohormones

Dopamine (DA) as PIF #(140, 142, 621) D, (279, 280, 1171) 1 Ix (492, 847) | In vitro (140, 1096-1098)
Giza Goo (100, 1065) | I, (407, 754, 847) | In vivo (140, 395, 1281, 1421, 1423)
| AC/cAMP (398, 508, 565, 619, 1002,
1355)
| PLC (272, 510, 513, 1002, 1635)
Thyrotropin releasing hormone (TRH) TRH-R (763, 1129, 1917) 1 PLC/Ca®* (57, 529, 563, 564, 747, 1 In vitro (17, 924, 1723)
#(520, 553) Gy11 (807) 807, 1002, 1558, 1684) 1 In vivo (178, 405, 963, 1419)
Gy (943) | I, (127, 128, 1565)
Oxytocin *(620) OT-R 1 PLC/Ca®* (246) 1 In vitro (827, 1537)
1 In vivo (867, 1087, 1235, 1243, 1537, 1542)
+(1371)
Vasoactive intestinal polypeptide (VIP) VIP-R (125) 1 AC/cAMP (1314, 1349, 1354, 1355) 1 In vitro (1535, 1538, 1608-1610) 1 in vivo (4,
#(1313) 891, 892, 1313, 1343, 1506, 1611, 1873)
1 Ica (856)

Putative prolactin releasing and release-inhibiting newrohormones

Somatostatin (SST) *(3, 319, 724) SST-R,_; (390, 463, 671, 1190, 1195, | AC/cAMP (941, 1715) | In vitro (461, 462, 466, 509, 733, 824, 826,
1334, 1375, 1391, 1392, 1463, I I, (941, 1715) 941, 1783) (1394, 1460)
1613, 1744) 1 Ixcca (1878) | In vivo (359, 507, 651, 913, 1001, 1018)
y-Aminobutyric acid (GABA) *(1206,  GABA, (52, 54, 679, 841) 1 Iy (841, 846) | In vitro (56, 511, 679, 691, 1441, 1569) (38,
1716, 1719, 1827) $(1247, 1619) GABAy, (378, 1091, 1092) 1 Incarry (41) 39)

| In vivo (55, 96, 378, 394-396,
459, 1092, 1168, 1632, 1881)

Atrial natriuretic hormones (ANH) *#(1604) ANH-R (713) 1 GC/cGMP (305, 321, 713, 1345) | In vitro (482)
1 In vivo (571)
Vasopressin (VP) *(782, 789, 966, 1424) VP-R (47, 957) 1 PLC/Ca®* (246) 1 In vitro (734, 1616)
V, (50, 952) 1 AC/cAMP (246) 1 In vivo (829, 1276, 1283, 1372, 1616, 1785, 1809)
V, (954, 955)
Calcitonin (CT) | PLC/PLA, (514, 880, 1660, 1661) | In vitro (514, 880, 1225, 1593-1595, 1597,
1 Fast [Ca*"]; (1660, 1661) 1631, 1894)
| In vivo (495, 531, 1348, 1595, 1633,
1660)
| Sustained [Ca®"]; (1660, 1661) 1 In vivo [in the absence of Ts] (1905)
Neuropeptide Y Y, Y, (897) 1 PLC/Ca?* [Y1] (528, 1849) 1 In vitro [cycling female] (302)
| I, [Y2] (528, 1849, 1857) | In vitro [ovx or lactating] (1857)
| AC/cAMP [Y1, Y2] (897)
Angiotensin II AT,y (1022) 1 PLC/Ca®* (269, 270, 506, 513, 610, 1 In vitro (14, 36, 409, 746, 1575)
Gi/G, (513) 1075, 1572, 1902)
1 AC/cAMP (93)
Galanin (GAL) *(1078) GAL-R (136, 915, 1890) 1 PLC/Ca®* (727) 1 In vitro (465, 697, 1890)
Substance P (SP) SP-R (930, 1006-1008) 1 PLC/Ca®* (932, 1158) 1 In vitro (1819, 1820)
1 In vivo (1482)
Bombesin-like peptides (gastrin- (126, 796, 1671, 1845, 1877) 1 PLC/Ca?* (177, 461, 462, 1766) 1 In vitro (797-799, 1876)
releasing peptide, neuromedin B
and C)
Neurotensin (NT) *(946, 1866) NT-R (1180) 1 PLC/Ca®" (1179) 1 In vitro (505)
1 Ic, (1179) 1 In vivo (964, 1166, 1167, 1482)
1 PLA, (271, 1179)
Dopamine as PRF D, (252) 1 I, (248, 582) 1 In vitro (252, 346, 427, 761, 979, 1614)
G, (251) 1 Ex vivo (761, 1280, 1282)

1 In vivo (72)

Neuroendocrine regulators of prolactin secretion were selected based on the following (pharmacological, neuroanatomical, and physiological)
criteria. 1) They are capable of affecting prolactin secretion by acting directly at the lactotrophs; 2) produced by neurons, usually residing within
the so-called “neuroendocrine hypothalamus,” which project to the external zone of the median eminence; and 3) their concentration in the pituitary
portal blood is significantly higher than in the peripheral circulation. Putative releasing and release-inhibiting hormones only partially fulfill these
criteria. Arrows indicate the nature of the effects of the neurohormones: 1 increase/facilitation, | decrease/inhibition. AC, adenylyl cyclase; GC,
guanylyl cyclase; PLA,, phospholipase A,; PLC, phospholipase C; Iy, potassium current/channel; I ¢, Ca?*-dependent potassium current/channel;
Ixgrr), G protein-gated potassium channel; Iy;,, inward rectifying potassium channel; I, calcium current/channel; I, chloride current/channel.
Reference numbers are given in parentheses. *Detected in the portal blood and/or in the external zone of the median
eminence. T Conflicting observations.
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FIG. 6. Schematic representation of the major regulatory pathways to the neuroendocrine neurons controlling
prolactin secretion. The most important prolactin inhibiting factor (PIF) is dopamine (DA), synthesized by the tuberoin-
fundibular dopaminergic neurons of the arcuate nucleus (arn). The two most potent prolactin releasing factors (PRF),
thyrotropin-releasing hormone (TRH) and oxytocin (OT), are produced by the parvi- and magnocellular neurons of the
paraventricular nucleus (pvn). These neuroendocrine neurons project directly (TRH) to the external zone of the median
eminence (me), or send axon collaterals there in passage through the internal zone of the median eminence en route to
the posterior lobe of the pituitary gland (OT). These axons in the median eminence terminate around the perivascular
spaces of the portal capillary system. The circadian rhythms of PIF and PRH release are paced by the (VIPergic?)
neurons of the suprachiasmatic nucleus (scn) receiving entrainment from the retinohypothalamic pathway. Both the PIF
and PRF producing neurons receive serotonergic (5-HT) innervation ascending mainly through the median forebrain
bundle from the dorsal raphe nucleus of the brain stem. These serotonergic pathways participate in regulation of
prolactin secretion during stress, pregnancy, and lactation. F, fornix; OC, optic chiasma; son, supraoptic nucleus.

secretion (1146). Taken together, there is little doubt that
this trophoblast-specific factor (64) activates dopaminer-
gic neurons and thus suppresses pituitary prolactin secre-
tion during the latter half of pregnancy.

4. The nonpregnant uterus

It has long been appreciated that removal of the
uterus prolongs the life span of corpora lutea in a large
number of mammals (1176, 1508). In many, this has been
attributed to removal of a luteolytic hormone of uterine
origin. In humans, sheep, rats, and rabbits this hormone
has been identified as prostaglandin F,, (1322). Although
there is no doubt that this is the mechanism of luteolysis,
there are data indicating that the uterus also contributes
to luteolysis by depressing the secretion of the luteotro-
phic hormone prolactin (5677, 578, 646, 647, 650).

Artificial stimulation of the uterine cervix initiates
recurrent surges of prolactin secretion for 13 days in
ovariectomized animals (585). When the uterus is re-
moved, this same stimulus eventuates in recurrent surges
for 21 days (577). Because there is no corpus luteum in
place whose life could be prolonged to release progester-
one and maintain the surges (645), the only interpretation
of these data is that the uterus secretes a substance that
acts at the hypothalamo-pituitary axis to directly inhibit
prolactin secretion. Indeed, even the steroid regimen that

extinguishes the mating-induced surges of prolactin se-
cretion (645) requires the uterus (650). This PIF is extract-
able from the uterus and actively inhibits only prolactin
secretion from cultured anterior pituitary cells (647). Af-
ter enzymatically separating and culturing uterine epithe-
lial, stromal, and myometrial cells and placing them in
culture, coincubation of the spent media from only epi-
thelial cell cultures inhibits prolactin secretion from cul-
tured pituitary cells in a dose-dependent manner (648).
Similarly, addition of serum from rats with their uteri
intact resulted in a greater inhibition of prolactin secre-
tion than serum from a hysterectomized animal (648).
These data suggest that the uterus secretes a factor into
blood that acts directly at the lactotroph to inhibit pro-
lactin secretion. On the other hand, a central effect of a
uterine factor has not been excluded since hysterectomy
at the early stage of lactation significantly delays the
extinction of suckling-induced prolactin secretion (907).
The chemical nature of the material has yet to be identi-
fied.

5. Adipose tissue (leptin)

It has long been recognized that nutritional status
and reproductive capacity are related (377, 569). Leptin,
the product of the obese (0b) gene, is a humoral signal
secreted by adipose tissue to act in the CNS to regulate



October 2000

food intake and body weight (15, 268, 294, 802, 1685). It
seems that leptin provides the link between nutritional
and reproductive function (117, 316, 339, 377, 569, 1742).

Leptin stimulates prolactin secretion from cells iso-
lated from the anterior lobe of the pituitary gland (1918).
Given intracerebroventricularly, leptin-(116—130) stimu-
lates prolactin (and LH) secretion in fasted adult male rats
(640). In addition, leptin restores the starvation-elimi-
nated prolactin (and LH) surges in estradiol/progester-
one-implanted ovariectomized animals (969). Restoring
circulating leptin concentration of starved animals to the
physiological level by administering leptin subcutane-
ously with osmotic minipumps also restores the estradiol/
progesterone-induced prolactin (and LH) surge (1865). In
addition, antileptin serum significantly delays the onset of
the secretory surge of prolactin in normally fed animals
(969). These observations indicate that physiological con-
centrations of leptin in the peripheral circulation can
exert a stimulatory effect on steroid-induced (1865) or
spontaneous (969) prolactin (and LH) secretion.

Increased serum prolactin concentrations, induced
by pituitary graft or exogenous ovine prolactin injection,
stimulate leptin secretion (690). Moreover, prolactin is
able to increase leptin mRNA in white adipose tissue
(690). These recent observations indicate that both pro-
lactin and leptin are intricately involved in the complex
regulation of energy balance and reproduction.

Taken together, these data indicate that leptin plays
an important permissive role in the generation of steroid-
induced prolactin (and LH) surges in female rats. How-
ever, the mechanism whereby leptin alters prolactin se-
cretion is not yet known. Several hypothalamic neuronal
systems (e.g., oxytocin/vasopressin, NPY, POMC, Agouti-
related peptide) express leptin receptors and are affected
by leptin in the peripheral circulation and/or in the cere-
brospinal fluid (500, 559, 1743, 1898). Recent evidence
indicates that the effects of leptin on prolactin secretion
are mediated by melanocortins, possibly through MC4
melanocortin receptors (1864).

There is little information on the intracellular signal-
ing mechanisms activated by leptin. However, because
the leptin receptor (Ob-R) is a member of the cytokine
receptor family (1720), the Jak/STAT pathway (for further
details, see sect. 1Iv) presumably plays an important role in
this respect (723). In glucose-sensitive neurons of the
lateral hypothalamus, leptin induces a long-lasting hyper-
polarization by activating ATP-sensitive potassium (K,p)
channels (1670). It has been suggested by the authors
(1670) that the K,p channel may function as an end point
of the intracellular pathway(s) elicited by leptin.

VIII. EPILOGUE

It has been well recognized that prolactin ensures
survival of the species through its reproductive role and
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survival of the individuals of the species in its homeo-
static roles. While we know a great deal about the chem-
istry, biological actions, and controls in its reproductive
role, there is a paucity of similar information in its ho-
meostatic roles. Hopefully these voids articulated in this
review will be filled in the near future.

Most of the active endogenous substances regulating
prolactin secretion have multiple sites of action: they can
act at the hypothalamic level as neurotransmitter (Table
1) and also at the pituitary as a neurohormone (Table 2).

At the hypothalamic level, many of these substances
can directly affect the activity of neuroendocrine dopami-
nergic and PRF neurons and/or presynaptically regulate
neural inputs to these neuroendocrine cells (summarized
in Figs. 5 and 6). The precise mode of communication
between different modules of the regulative circuitry and
the integration of the multifarious neuronal and humoral
inputs is still not well understood. Ongoing research with
insightful combinations of electrophysiological tech-
niques, tract tracing, and immunocytochemical identifica-
tion (both light and electron microscopic levels) hold
much promise for further advance in this field.

At the pituitary level, only a few substances play a
role as primary neurohormones by robustly affecting hor-
mone secretion (e.g., dopamine, TRH), while many others
can act as modulators by amplifying or diminishing the
effect of a primary neurohormone (e.g., neuropeptide Y,
galanin, enkephalin). The distinction between the two
modes of action is rather intuitive, and the possibility to
shift from one mode to another remains open; under
different physiological circumstances (e.g., proestrus,
pregnancy, lactation, long-term exposure to a noxious
stimulus, aging), a modulator can became a principal
factor in regulating hormone secretion.

Address for reprint requests and other correspon-
dence: M. E. Freeman, Dept. of Biological Science, Florida
State Universtiy, Tallahassee, FL 32306-4340 (E-mail:
freeman@neuro.fsu.edu).
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